(2013•龍泉驛區(qū)模擬)已知函數(shù)y=sinax+b(a>0)的圖象如圖所示,則函數(shù)y=loga(x+b)的圖象可能是(  )
分析:根據(jù)函數(shù)y=sinax+b(a>0)的圖象求出a、b的范圍,從而得到函數(shù)y=loga(x+b)的單調(diào)性及圖象特征,從而得出結論.
解答:解:由函數(shù)y=sinax+b(a>0)的圖象可得 0<b<1,2π<
a
<3π,即
2
3
<a<1.
故函數(shù)y=loga(x+b)是定義域內(nèi)的減函數(shù),且過定點(1-b,0),
故選A.
點評:本題主要考查由函數(shù)y=Asin(ωx+∅)的部分圖象求函數(shù)的解析式,對數(shù)函數(shù)的單調(diào)性以及圖象特征,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•龍泉驛區(qū)模擬)已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R

(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)已知△ABC內(nèi)角A,B,C的對邊分別為a,b,c,且c=3,f(C)=0,若向量
m
=(1,sinA)
n
=(2,sinB)
共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•龍泉驛區(qū)模擬)已知在等比數(shù)列{an}中,a1=1,且a2是a1和a3-1的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=2n-1+an(n∈N*),求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•龍泉驛區(qū)模擬)已知a>0,二項式(x-
ax
)8
展開式中常數(shù)項為1120,則此展開式中各項系數(shù)的和等于
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•龍泉驛區(qū)模擬)等差數(shù)列{an}中,a1+a4+a10+a16+a19=150,則a10=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•龍泉驛區(qū)模擬)已知全集U={0,1,2,3,4,5,6},A={1,2,3},B={2,4,6},則(?UA)∩B=(  )

查看答案和解析>>

同步練習冊答案