對于解方程x2-2x-3=0的下列步驟:

①設(shè)f(x)=x2-2x-3

②計算方程的判別式Δ=22+4×3=16>0

③作f(x)的圖象

④將a=1,b=-2,c=-3代入求根公式

x=,得x1=3,x2=-1.

其中可作為解方程的算法的有效步驟為(  )

A.①②                            B.②③

C.②④                D.③④

 

【答案】

C

【解析】解一元二次方程可分為兩步確定判別式和代入求根公式,故②④是有效的,①③不起作用.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于下列結(jié)論:
①函數(shù)y=ax+2(x∈R)的圖象可以由函數(shù)y=ax(a>0且a≠1)的圖象平移得到;
②函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于y軸對稱;
③方程log5(2x+1)=log5(x2-2)的解集為{-1,3};
④函數(shù)y=ln(1+x)-ln(1-x)為奇函數(shù).
其中正確的結(jié)論是
①④
①④
(把你認為正確結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:對于任意x∈[0,1],函數(shù)f(x)≥0恒成立,且當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立,則稱f(x)為G函數(shù).已知函數(shù)g(x)=x2與h(x)=a-2x-1是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實數(shù)a的值;
(3)在(2)的條件下,利用函數(shù)圖象討論方程g(2x)+h(-2x+1)=m(m∈R)解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足:①對于任意的x∈R,f(-x)+f(x)=0;②當(dāng)x>0時,f(x)=x2-3.
(1)求函數(shù)f(x)的解析表達式;
(2)畫出函數(shù)f(x)的圖象;
(3)解方程f(x)=2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足:①對于任意的x∈R,f(-x)+f(x)=0;②當(dāng)x>0時,f(x)=x2-3.
(1)求函數(shù)f(x)的解析表達式;
(2)解方程f(x)=2x.

查看答案和解析>>

同步練習(xí)冊答案