(本題滿分12分)

設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點,O為坐標(biāo)原點.

(Ⅰ)求橢圓E的方程;

(Ⅱ)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交A,B且

?若存在,寫出該圓的方程,若不存在說明理由。

 

七彩教育網(wǎng)(www.7caiedu.cn)

 

 

 

【答案】

(1)

(2)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且

【解析】

試題分析:(1)因為橢圓E: (a,b>0)過M(2,),N(,1)兩點,

所以解得所以橢圓E的方程為

(2)假設(shè)存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設(shè)該圓的切線方程為解方程組,即,

則△=,即

,

 

要使,需使,即,所以,所以,

所以,所以,即,

因為直線為圓心在原點的圓的一條切線,

所以圓的半徑為,,,

所求的圓為,此時圓的切線都滿足,

而當(dāng)切線的斜率不存在時切線為與橢圓的兩個交點為滿足,

綜上, 存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且

考點:本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,圓與橢圓的位置關(guān)系。

點評:中檔題,涉及直線與圓錐曲線的位置關(guān)系問題,往往要利用韋達定理。存在性問題,往往從假設(shè)存在出發(fā),運用題中條件探尋得到存在的是否條件具備。(2)小題解答中,集合韋達定理,應(yīng)用平面向量知識證明了圓的存在性。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

( 本題滿分12分 )
已知函數(shù)f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知數(shù)列是首項為,公比的等比數(shù)列,,

設(shè),數(shù)列.

(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分,第1小題6分,第2小題6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB;

(2) 若,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

設(shè)函數(shù)為常數(shù)),且方程有兩個實根為.

(1)求的解析式;

(2)證明:曲線的圖像是一個中心對稱圖形,并求其對稱中心.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題

(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)

如圖所示,直二面角中,四邊形是邊長為的正方形,,上的點,且⊥平面

(Ⅰ)求證:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)求點到平面的距離.

 

查看答案和解析>>

同步練習(xí)冊答案