(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
(I);(II)最大值為,最小值為.

試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過點作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點,到定直線的最大值與最小值問題處理.
試題解析:(I)曲線C的參數(shù)方程為為參數(shù)).直線的普通方程為
(II)曲線C上任意一點的距離為.則
.其中為銳角,且
當(dāng)時,取到最大值,最大值為
當(dāng)時,取到最小值,最小值為
【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程是,以極點為平面直角坐標(biāo)系的原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t是參數(shù))
(1)將曲線C的極坐標(biāo)方程和直線L參數(shù)方程轉(zhuǎn)化為普通方程;
(2)若直線L與曲線C相交于M、N兩點,且,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C1為參數(shù)),曲線C2(t為參數(shù)).
(1)指出C1,C2各是什么曲線,并說明C1與C2公共點的個數(shù);
(2)若把C1,C2上各點的縱坐標(biāo)都壓縮為原來的一半,分別得到曲線.寫出的參數(shù)方程.公共點的個數(shù)和C公共點的個數(shù)是否相同?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

經(jīng)過點M(,0)作直線l,交曲線 (θ為參數(shù))于A,B兩點,若|MA|,|AB|,|MB|成等比數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以極坐標(biāo)系中的點(1,
π
6
)
為圓心,1為半徑的圓的直角坐標(biāo)方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點P是曲線C:
x=2
3
cosθ
y=2sinθ
(θ為參數(shù))上一點,且在第一象限,OP(O是平面直角坐標(biāo)系的原點)的傾斜角為
π
6
,則點P的坐標(biāo)為( 。
A.(
6
2
B.(
3
,1)
C.(
2
,
6
D.(1,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓上的點到直線的距離的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線L的參數(shù)方程為為參數(shù)),則直線L的傾斜角的余弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是橢圓的下焦點,為坐標(biāo)原點,點在橢圓上,則的最大值為.

查看答案和解析>>

同步練習(xí)冊答案