【題目】△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示三角形的面積,若asinA+bsinB=csinC,且S= ,則對(duì)△ABC的形狀的精確描述是(
A.直角三角形
B.等腰三角形
C.等腰或直角三角形
D.等腰直角三角形

【答案】D
【解析】解:∵asinA+bsinB=csinC,
∴由正弦定理可得:sin2A+sin2B=sin2C,可得:a2+b2=c2 ,
∴C= ,△ABC是直角三角形.
又∵S= = acsinB,
×2accosB= acsinB,解得:sinB﹣cosB=0,可得: sin(B﹣ )=0,
∴B﹣ =kπ,可得:B=kπ+ ,k∈Z,
∵B∈(0, ),B﹣ ∈(﹣ , ),
∴B﹣ =0,可得:B= ,A=π﹣B﹣C= ,
∴△ABC是等腰直角三角形.
故選:D.
【考點(diǎn)精析】關(guān)于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

1)討論的單調(diào)性;

2)設(shè),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)g(x)=x2﹣2(x∈R), 則f(x)的值域是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:x2+y2﹣4x﹣6y+12=0,點(diǎn)A(3,5).
(1)求過(guò)點(diǎn)A的圓的切線方程;
(2)O點(diǎn)是坐標(biāo)原點(diǎn),連接OA,OC,求△AOC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
A.(﹣∞,11)
B.(1,11]
C.(1,11)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式x2﹣ax﹣2>0的解集為{x|x<﹣1或x>b}(b>﹣1).
(1)求a,b的值;
(2)當(dāng)m>﹣ 時(shí),解關(guān)于x的不等式(mx+a)(x﹣b)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 ()的焦距為4,左、右焦點(diǎn)分別為,且 與拋物線 的交點(diǎn)所在的直線經(jīng)過(guò).

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò) 的直線 交于兩點(diǎn),與拋物線無(wú)公共點(diǎn),求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=(
A.{1,2}
B.{1,2,3}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

同步練習(xí)冊(cè)答案