【題目】設集合,選擇的兩個非空子集,要使中最小的數(shù)大于中最大的數(shù),則不同的選擇方法共有________種.

【答案】

【解析】

試題若集合中分別有一個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有三個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有四個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有一個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有三個元素,則選法種數(shù)有種;若集合中有三個元素,集合中有一個元素,則選法種數(shù)有種;若集合中有三個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有四個元素,集合中有一個元素,則選法種數(shù)有種;總計有種.故答案應填:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,及圓

1)求過點的圓的切線方程;

2)若過點的直線與圓相交,截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點為,

設函數(shù)試討論函數(shù)的零點個數(shù).(為自然常數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),是常數(shù)且.

(1)若曲線處的切線經(jīng)過點,求的值;

(2)若是自然對數(shù)的底數(shù)),試證明:①函數(shù)有兩個零點,②函數(shù)的兩個零點滿足.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點和上頂點分別為,定義:為橢圓特征三角形,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為相似橢圓,且特征三角形的相似比即為相似橢圓的相似比,已知點是橢圓的一個焦點,且上任意一點到它的兩焦點的距離之和為4

1)若橢圓與橢圓相似,且的相似比為21,求橢圓的方程.

2)已知點是橢圓上的任意一點,若點是直線與拋物線異于原點的交點,證明:點一定在雙曲線.

3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.

(1) 證明:PB∥平面AEC

(2) 設二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為單曲型直線,下列直線中是單曲型直線的是( )

; y=2; ; .

A.①③ B. ③④ C.②③ D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在上的偶函數(shù),且,當時,,則在區(qū)間內關于的方程解得個數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案