(本題滿分14分)

已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點,左焦點為,右頂點為,設(shè)點.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的動點,求線段中點的軌跡方程;

(3)過原點的直線交橢圓于點,求面積的最大值。

 

【答案】

(1)(2) (3)

【解析】

試題分析:解:(1)由已知得橢圓的半長軸a=2,半焦距c=,則半短軸b=1.

又橢圓的焦點在x軸上, ∴橢圓的標(biāo)準(zhǔn)方程為

(2)設(shè)線段PA的中點為M(x,y) ,點P的坐標(biāo)是(x0,y0),

   得

又點P在橢圓上,得,

∴線段PA中點M的軌跡方程是.

(3)當(dāng)直線BC垂直于x軸時,BC=2,因此△ABC的面積S△ABC=1.

當(dāng)直線BC不垂直于x軸時,設(shè)該直線方程為y=kx,代入,

解得B(,),C(-,-),

,又點A到直線BC的距離d=,

∴△ABC的面積S△ABC=

于是S△ABC=

≥-1,得S△ABC,其中,當(dāng)k=-時,等號成立.

∴S△ABC的最大值是.

考點:橢圓的方程以及直線與橢圓的位置關(guān)系

點評:解決的關(guān)鍵是利用橢圓的性質(zhì)得到a,b,c的關(guān)系式,同時聯(lián)立方程組,結(jié)合韋達定理來表示軌跡方程,結(jié)合距離公式得到面積,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案