設(shè)函數(shù)

(1)當(dāng)曲線(xiàn)處的切線(xiàn)斜率

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)已知函數(shù)有三個(gè)互不相同的零點(diǎn)0,,且。若對(duì)任意的,恒成立,求m的取值范圍。

 

【答案】

解:(1)當(dāng)

所以曲線(xiàn)處的切線(xiàn)斜率為1.

(2)解:,令,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052200471260935359/SYS201205220049030468612015_DA.files/image006.png">

當(dāng)x變化時(shí),的變化情況如下表:

+

0

-

0

+

極小值

極大值

內(nèi)減函數(shù),在內(nèi)增函數(shù)。

函數(shù)處取得極大值,且=

函數(shù)處取得極小值,且=

(3)解:由題設(shè),

所以方程=0由兩個(gè)相異的實(shí)根,故,

,解得

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052200471260935359/SYS201205220049030468612015_DA.files/image032.png">

,而,不合題意若則對(duì)任意的

,所以函數(shù)的最小值為0,于是對(duì)任意的,恒成立的充要條件是,解得 w.w.w.zxxk.c.o.m    綜上,m的取值范圍是

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(04年廣東卷)(12分)

設(shè)函數(shù)

(I)證明:當(dāng)時(shí),

(II)點(diǎn)(0<x0<1)在曲線(xiàn)上,求曲線(xiàn)上在點(diǎn)處的切線(xiàn)與軸,軸正向所圍成的三角形面積的表達(dá)式。(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省高三教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷3(理科)(解析版) 題型:解答題

設(shè)函數(shù)
(Ⅰ)當(dāng)m=3時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(Ⅱ)若函數(shù)f(x)有三個(gè)不相同的零點(diǎn)0,α,β(α<β),且對(duì)任意的x∈[α,β],都有不等式f(x)≥f(1)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆度黑龍江龍東地區(qū)高二第一學(xué)期期末文科數(shù)學(xué)試卷 題型:解答題

設(shè)函數(shù)

(1)當(dāng)曲線(xiàn)處的切線(xiàn)方程

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)已知函數(shù)有三個(gè)互不相同的零點(diǎn)0,,且。若對(duì)任意的,恒成立,求m的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(-1,f(-1))處的切線(xiàn)方程;
(2)當(dāng)數(shù)學(xué)公式時(shí),求f(x)的極大值和極小值;
(3)若函數(shù)f(x)在區(qū)間(-∞,-3)上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案