精英家教網 > 高中數學 > 題目詳情
設拋物線y2=4x的焦點弦被焦點分為長是m和n的兩部分,則m與n的關系是
 
分析:假設直線斜率存在,則可設出直線方程與拋物線方程聯立消去y可求得x1+x2,再根據拋物線的定義可求得m+n和mn,進而可求得
1
m
+
1
n
=
m+n
mn
=
2
p
.再看當斜率不存在時,也符合.綜合可推斷
1
m
+
1
n
=
2
p
,然后根據p=2,即可得出結論.
解答:解:拋物線y2=2Px①設AB:y=k(x-
p
2
),直線方程與拋物線方程聯立消去y得
得k2x2-(k2p+2p)x+
k2p2
4
=0.
∴x1+x2=
k2p+2p
k2

又由拋物線定義可得
m+n=x1+x2+p=
2k2p+2p
k2
=
2p(k2+1)
k2
,
m•n=(x1+
p
2
)(x2+
p
2
)=
p(k2+1)
k2
,
1
m
+
1
n
=
m+n
mn
=
2
p

②若k不存在,則AB方程為x=-
p
2
,顯然符合本題.
綜合①②有
1
m
+
1
n
=
2
p

∵p=2
1
m
+
1
n
=1

故答案為
1
m
+
1
n
=1
點評:本題主要考查了拋物線的簡單性質及拋物線與直線的關系.當遇到拋物線焦點弦問題時,常根據焦點設出直線方程與拋物線方程聯立,把韋達定理和拋物線定義相結合解決問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設拋物線y2=4x的焦點為F,過點M(-1,0)的直線在第一象限交拋物線于A、B,使
AF
BF
=0
,則直線AB的斜率k=(  )
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

設拋物線y2=4x的焦點為F,過點F的直線與拋物線交于A,B兩點,過AB的中點M作準線的垂線與拋物線交于點P,若|PF|=
3
2
,則弦長|AB|等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設拋物線y2=4x的焦點為F,過點M(
1
2
,0)
的直線與拋物線相交于A,B兩點,與拋物線的準線相交于點C,|BF|=2,則△BCF與△ACF的面積之比
S△BCF
S△ACF
=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設拋物線 y2=4x的一條弦AB以P(
32
,1)
為中點,則該弦所在直線的斜率為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•順義區(qū)一模)在平面直角坐標系xoy中,設拋物線y2=4x的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的傾斜角為120°,那么|PF|=
4
4

查看答案和解析>>

同步練習冊答案