如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為,已知S的身高約為米(將眼睛距地面的距離按米處理)

(1) 求攝影者到立柱的水平距離和立柱的高度;

(2) 立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

 

【答案】

(1) 攝影者到立柱的水平距離為3米,立柱高為米. (2) 攝影者可以將彩桿全部攝入畫面.

【解析】

試題分析:(1) 如圖,不妨將攝影者眼部設為S點,做SC垂直O(jiān)B于C,

故在中,可求得BA=3,即攝影者到立柱的水平距離為3米……… 3分

由SC=3,中,可求得

即立柱高為米. -------------- 6分

(2) (注:若直接寫當時,最大,并且此時,得2分)

連結SM,SN, 在△SON和△SOM中分別用余弦定理,

          ……8分

 

故攝影者可以將彩桿全部攝入畫面. …………………………………………… 10分

考點:解三角形的實際應用;余弦定理。

點評:在解應用題時,分析題意,分清已知與所求,再根據(jù) 題意正確畫出示意圖,通過這一步可將實際問題轉(zhuǎn)化為可用數(shù)學方法解決的問題。解題中,要注意正、余弦定理的應用。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為
3
米(將眼睛距地面的距離按
3
米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南師大附中高三第六次月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為米(將眼睛距地面的距離按米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省常州高級中學高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為米(將眼睛距地面的距離按米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇州市木瀆高級中學天華學校高三(上)12月月考數(shù)學試卷(解析版) 題型:解答題

如圖,2012年春節(jié),攝影愛好者S在某公園A處,發(fā)現(xiàn)正前方B處有一立柱,測得立柱頂端O的仰角和立柱底部B的俯角均為30°,已知S的身高約為米(將眼睛距地面的距離按米處理)
(1)求攝影者到立柱的水平距離和立柱的高度;
(2)立柱的頂端有一長2米的彩桿MN繞中點O在S與立柱所在的平面內(nèi)旋轉(zhuǎn).攝影者有一視角范圍為60°的鏡頭,在彩桿轉(zhuǎn)動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

同步練習冊答案