精英家教網 > 高中數學 > 題目詳情
(2012•浦東新區(qū)一模)動點P在邊長為1的正方體ABCD-A1B1C1D1的對角線BD1上從B向D1移動,點P作垂直于面BB1D1D的直線與正方體表面交于M,N,BP=x,MN=y,則函數y=f(x)的解析式為
y=
2
6
3
x,x∈[0,
3
2
]
2
2
-
2
6
3
x,x∈(
3
2
,
3
]
2
-|
2
-
2
6
3
x|x∈[0,3]
y=
2
6
3
x,x∈[0,
3
2
]
2
2
-
2
6
3
x,x∈(
3
2
,
3
]
2
-|
2
-
2
6
3
x|x∈[0,3]
分析:根據題意和正方體的特征,分析點P動的過程中,x隨著y變化情況以及變化速度,結合正方體的對稱性質可求
解答:解:由題意知,MN⊥平面BB1D1D,
則MN在底面ABCD上的射影是與對角線AC平行的直線,
∵BD=
3
,則DP=
3
-x

故當動點P在對角線BD1上從點B向D1運動時,x變大y變大,直到P為BD1的中點(記為O)時,y最大為AC;
從而當P在BO上時,分別過M、N、P作底面的垂線,垂足分別為M1、N1、P1
則y=MN=M1N1=2BP1=2•xcos∠D1BD=2•
2
3
x=
2
6
3
x

而當P在DO上時,然后x變大y變小,直到y(tǒng)變?yōu)?,根據對稱性可知
此時y=2
2
-
2
6
3
x

故答案為:y=
2
6
3
x,x∈[0,
3
2
]
2
2
-
2
6
3
x,x∈[
3
2
,
3
]
也可寫為y=
2
-|
2
-
2
6
3
|,x∈[0,3]
點評:本題考查了函數圖象的變化,根據幾何體的特征和條件進行分析兩個變量的變化情況,再用圖象表示出來,考查了作圖和讀圖能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)一模)函數y=
log2(x-2) 
的定義域為
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)一模)若X是一個非空集合,M是一個以X的某些子集為元素的集合,且滿足:
①X∈M、∅∈M;
②對于X的任意子集A、B,當A∈M且B∈M時,有A∪B∈M;
③對于X的任意子集A、B,當A∈M且B∈M時,A∩B∈M;
則稱M是集合X的一個“M-集合類”.
例如:M={∅,,{c},{b,c},{a,b,c}}是集合X={a,b,c}的一個“M-集合類”.已知集合X={a,b,c},則所有含{b,c}的“M-集合類”的個數為
10
10

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)二模)手機產業(yè)的發(fā)展催生了網絡新字“孖”.某學生準備在計算機上作出其對應的圖象,其中A(2,2),如圖所示.在作曲線段AB時,該學生想把函數y=x
1
2
,x∈[0,2]
的圖象作適當變換,得到該段函數的曲線.請寫出曲線段AB在x∈[2,3]上對應的函數解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)一模)設復數z滿足|z|=
10
,且(1+2i)z(i是虛數單位)在復平面上對應的點在直線y=x上,求z.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•浦東新區(qū)二模)已知z=
1
1+i
,則
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步練習冊答案