已知?jiǎng)訄AE與圓A:(x+4)2+y2=2外切,與圓B:(x-4)2+y2=2內(nèi)切,則動(dòng)圓圓心E的軌跡方程為
x2
2
-
y2
14
=1(x≥
2
)
x2
2
-
y2
14
=1(x≥
2
)
分析:利用兩圓相內(nèi)切與外切的性質(zhì)可得|EA|-|EB|=2
2
<2×4.再利用雙曲線的定義可得:動(dòng)圓的圓心E在以定點(diǎn)A(-4,0),B(4,0)為焦點(diǎn)的雙曲線的右支上.
解答:解:由圓A:(x+4)2+y2=2,可得圓心A(-4,0),半徑=
2
;由圓B:(x-4)2+y2=2可得圓心B(4,0),半徑=
2

設(shè)動(dòng)圓的半徑為R,由題意可得|EA|=R+
2
,|EB|=R-
2

|EA|-|EB|=2
2
<2×4.
由雙曲線的定義可得:動(dòng)圓的圓心E在以定點(diǎn)A(-4,0),B(4,0)為焦點(diǎn)的雙曲線的右支上.
a=
2
,c=4.∴b2=c2-a2=14.
∴動(dòng)圓圓心E的軌跡方程為
x2
2
-
y2
14
=1(x≥
2
)

故答案為
x2
2
-
y2
14
=1(x≥
2
)
點(diǎn)評(píng):熟練掌握兩圓相內(nèi)切與外切的性質(zhì)及其雙曲線的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AP與圓M:(x+
2
6
3
)2+y2=16
相切,且經(jīng)過(guò)點(diǎn)N(
2
6
3
,0)

(1)試求動(dòng)圓的圓心P的軌跡C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),圓D:(x-t)2+y2=t2(t>0),若圓D與曲線C交于關(guān)于x軸對(duì)稱的兩點(diǎn)A、B(點(diǎn)A的縱坐標(biāo)大于0),且
OA
OB
=0
,請(qǐng)求出實(shí)數(shù)t的值;
(3)在(2)的條件下,點(diǎn)D是圓D的圓心,E、F是圓D上的兩動(dòng)點(diǎn),滿足2
OD
=
OE
+
OF
,點(diǎn)T是曲線C上的動(dòng)點(diǎn),試求
TE
TF
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄AP與圓數(shù)學(xué)公式相切,且經(jīng)過(guò)點(diǎn)數(shù)學(xué)公式
(1)試求動(dòng)圓的圓心P的軌跡C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),圓D:(x-t)2+y2=t2(t>0),若圓D與曲線C交于關(guān)于x軸對(duì)稱的兩點(diǎn)A、B(點(diǎn)A的縱坐標(biāo)大于0),且數(shù)學(xué)公式,請(qǐng)求出實(shí)數(shù)t的值;
(3)在(2)的條件下,點(diǎn)D是圓D的圓心,E、F是圓D上的兩動(dòng)點(diǎn),滿足數(shù)學(xué)公式,點(diǎn)T是曲線C上的動(dòng)點(diǎn),試求數(shù)學(xué)公式的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省襄陽(yáng)四中、龍泉中學(xué)、荊州中學(xué)聯(lián)考高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知?jiǎng)訄AE與圓A:(x+4)2+y2=2外切,與圓B:(x-4)2+y2=2內(nèi)切,則動(dòng)圓圓心E的軌跡方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省無(wú)錫市高考數(shù)學(xué)模擬試卷(1)(解析版) 題型:解答題

已知?jiǎng)訄AP與圓相切,且經(jīng)過(guò)點(diǎn)
(1)試求動(dòng)圓的圓心P的軌跡C的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),圓D:(x-t)2+y2=t2(t>0),若圓D與曲線C交于關(guān)于x軸對(duì)稱的兩點(diǎn)A、B(點(diǎn)A的縱坐標(biāo)大于0),且,請(qǐng)求出實(shí)數(shù)t的值;
(3)在(2)的條件下,點(diǎn)D是圓D的圓心,E、F是圓D上的兩動(dòng)點(diǎn),滿足,點(diǎn)T是曲線C上的動(dòng)點(diǎn),試求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案