已知函數(shù)
(Ⅰ)當(dāng)時,求證:函數(shù)上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個零點,求的值.

(I)利用導(dǎo)數(shù)法求解單調(diào)區(qū)間即可證明;(II)t=2

解析試題分析:(I)f’(x)=axlna+2x-lna=(ax-1) lna +2x 
當(dāng)a>1時,lna >0
當(dāng)x∈(0,+∞)時,ax-1>0,2x>0
∴f’(x)>0,∴f(x)在(0,+∞)↑
(II)當(dāng)a>1時,x∈(-∞,0)時,ax-1<0,2x<0
f’(x)<0,∴f(x)在(-∞,0)↓
當(dāng)0<a<1時, x∈(0,+∞)時,lna <0, ax-1<0,
f’(x)>0,f(x)在(0,+∞)↑
x ∈(-∞,0)時, ax-1>0, lna <0
f’(x)<0, f(x)在(-∞,0)↓
∴當(dāng)a>0且a≠1時,f(x) 在(-∞,0)↓,f(x)在(0,+∞)↑
∴x=0是f(x)在k上唯一極小值點,也是唯一最小值點.
f(x)min=f(0)=1
若y=[f(x)-t]-1有三個零點,即|f(x)-t|=1,f(x)=t±1有三個根,所以t+1>t-1
∴t-1="f" (x)min= 1,∴t=2
考點:本題考查了導(dǎo)數(shù)的運(yùn)用
點評:導(dǎo)數(shù)本身是個解決問題的工具,是高考必考內(nèi)容之一,高考往往結(jié)合函數(shù)甚至是實際問題考查導(dǎo)數(shù)的應(yīng)用,求單調(diào)、最值、完成證明等,請注意歸納常規(guī)方法和常見注意點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=(x∈R)在區(qū)間[-1,1]上是增函數(shù).
(1)求實數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為大于零的常數(shù)。
(1)若函數(shù)內(nèi)調(diào)遞增,求a的取值范圍;
(2)求函數(shù)在區(qū)間[1,2]上的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,設(shè)函數(shù)
(1)若,求函數(shù)上的最小值
(2)判斷函數(shù)的單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)時取得極值.
(1)求、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)上的最小值;
(2)若函數(shù)的圖像恰有一個公共點,求實數(shù)a的值;
(3)若函數(shù)有兩個不同的極值點,且,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點處的切線方程;
(2)直線為曲線的切線,且經(jīng)過原點,求直線的方程及切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是實數(shù),函數(shù)
(Ⅰ)若,求的值及曲線在點處的切線方程;
(Ⅱ)求在區(qū)間上的最大值。

查看答案和解析>>

同步練習(xí)冊答案