已知曲線y=x2 (x>0)在點(diǎn)P處切線恰好與圓C:x2+(y+1)2=1相切,則點(diǎn)P的坐標(biāo)為
6
,6)
6
,6)
分析:先設(shè)P(x0,y0),根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)f(x)在x=x0處的導(dǎo)數(shù),從而求出切線的斜率,再用點(diǎn)斜式寫出化簡,根據(jù)此直線與圓C:x2+(y+1)2=1相切,轉(zhuǎn)化成圓心到直線的距離等于半徑,然后利用點(diǎn)到直線的距離公式進(jìn)行求解即可.
解答:解:設(shè)P(x0,y0),由題意知曲線y=x2在P點(diǎn)的切線斜率為k=2x0
切線方程為2x0x-y-x02=0,而此直線與圓C:x2+(y+1)2=1相切,
∴d=
|1-
x
2
0
|
4
x
2
0
+1
=1
.解得x0
6
(負(fù)值舍去),y0=6.
∴P點(diǎn)的坐標(biāo)為(
6
,6).
故答案為:(
6
,6).
點(diǎn)評(píng):考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線方程的斜率,以及直線與圓相切的條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

24、已知曲線y=x2+2x在點(diǎn)(1,f(1))處的切線為l.求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2-1在x=x0點(diǎn)處的切線與曲線y=1-x3在x=x0處的切線互相平行,則x0的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2在點(diǎn)P處切線與直線3x-y+1=0的夾角為45°,那么點(diǎn)P坐標(biāo)為( 。
A、(-1,1)
B、(-
1
4
1
16
),(
1
2
,
1
4
)
C、(-
1
4
,
1
16
)
D、(-1,1),(
1
4
,
1
16
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2-1與y=1+x3在x=x0處的切線互相垂直,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=x2上一點(diǎn)P處的切線與直線2x-y+1=0平行,則點(diǎn)P的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊答案