11.設(shè)等差數(shù)列{an}的前n項(xiàng)和Sn滿足S5=15,且2a2,a6,a8+1成公比大于1的等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={2^n}•{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)利用等差數(shù)列的首項(xiàng)與公差通過(guò)數(shù)列的和求出a3,利用2a2,a6,a8+1成公比大于1的等比數(shù)列.求出公差,然后求解數(shù)列的通項(xiàng)公式.
(2)化簡(jiǎn)數(shù)列的通項(xiàng)公式,利用錯(cuò)位相減法求解數(shù)列的和即可.

解答 解:(1)設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,S5=15,所以a3=3,2a2,a6,a8+1成公比大于1的等比數(shù)列.所以a62=2a2(a8+1),即:(a3+3d)2=2(a3+d)(a3+5d+1),所以d=1或d=$-\frac{15}{19}$(舍去),
所以a1=a3-2d=3-2=1.
所以an=n,
數(shù)列{an}的通項(xiàng)公式為:an=n;
(2)由(1)可知:設(shè)${b_n}={2^n}•{a_n}$=n•2n,
Tn=1×2+2×22+3×23+…+n•2n…①;
①×2可得:2Tn=1×22+2×23+3×24+…+(n-1)2n+n•2n+1…②,
①-②得:-Tn=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=2n+1-2-n•2n+1
∴Tn=(n-1)2n+1+2.

點(diǎn)評(píng) 本題考查數(shù)列求和,數(shù)列通項(xiàng)公式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC中,a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,則cosB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知3b=4c,B=2C.
(Ⅰ)求sinB的值;
(Ⅱ)若b=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在高三一次數(shù)學(xué)測(cè)驗(yàn)后,某班對(duì)選做題的選題情況進(jìn)行了統(tǒng)計(jì),如表.
坐標(biāo)系與參數(shù)方程不等式選講
人數(shù)及均分人數(shù)均分 人數(shù) 均分
男同學(xué)14867
女同學(xué)86.5125.5
(Ⅰ)求全班選做題的均分;
(Ⅱ)據(jù)此判斷是否有90%的把握認(rèn)為選做《坐標(biāo)系與參數(shù)方程》或《不等式選講》與性別有關(guān)?
(Ⅲ)已知學(xué)習(xí)委員甲(女)和數(shù)學(xué)科代表乙(男)都選做《不等式選講》.若在《不等式選講》中按性別分層抽樣抽取3人,記甲乙兩人被選中的人數(shù)為,求的數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xoy中,圓的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ為參數(shù)),直線C1的參數(shù)方程為$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t為參數(shù)).
(1)若直線C1與O圓相交于A,B,求弦長(zhǎng)|AB|;
(2)以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為$ρ=2cosθ+2\sqrt{3}sinθ$,圓O和圓C2的交點(diǎn)為P,Q,求弦PQ所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.以下四個(gè)命題中,真命題是(  )
A.?x∈(0,π),sinx=tanx
B.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
C.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)
D.條件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,條件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$則p是q的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.在正方形ABCD中,AB=AD=2,M,N分別是邊BC,CD上的動(dòng)點(diǎn),當(dāng)|$\overrightarrow{AM}$|•|$\overrightarrow{AN}$|=4時(shí),則|$\overrightarrow{MN}$|的取值范圍是$[\sqrt{2},2]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.“x<2”是“2x<1”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,空間四邊形OACB中,$\overrightarrow{{O}{A}}$=$\overrightarrow{a}$,$\overrightarrow{{O}{B}}$=$\overrightarrow$,$\overrightarrow{{O}C}$=$\overrightarrow{c}$,點(diǎn)M在OA上,且$\overrightarrow{OM}=\frac{2}{3}\overrightarrow{OA}$,點(diǎn)N為BC中點(diǎn),則$\overrightarrow{MN}$等于$-\frac{2}{3}\overrightarrow{a}$+$\frac{1}{2}\overrightarrow+\frac{1}{2}\overrightarrow{c}$.(用向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案