已知向量=(sinA,cosA), =,,且A為銳角.
(1)求角A的大小;
(2)求函數(shù)f(x)=cos2x+4cosAsinx,(xÎR) 最大值及取最大值時(shí)x的集合.
(1) A= ;(2) f(x)有最大值,x=2kp+ 或x=2kp+ (kÎZ)
【解析】
試題分析:(1)∵∴-sinA+cosA=0 3分
∴tanA=,A為銳角,∴A= 6分
(2)由(1)知cosA=
所以 8分
因?yàn)閤∈R,所以,因此,當(dāng)時(shí),f(x)有最大值 10分
且x=2kp+ 或x=2kp+ (kÎZ) 12分
考點(diǎn):本題主要考查平面向量的平行,平面向量的坐標(biāo)運(yùn)算,三角函數(shù)的和差倍半公式,三角函數(shù)、二次函數(shù)的圖象和性質(zhì)。
點(diǎn)評:中檔題,本題綜合考查平面向量的平行,平面向量的坐標(biāo)運(yùn)算,三角函數(shù)的和差倍半公式,三角函數(shù)、二次函數(shù)的圖象和性質(zhì)。向量平行,等價(jià)于。利用向量的運(yùn)算,得到三角函數(shù)式,運(yùn)用三角公式進(jìn)行化簡,以便于利用其它知識解題,是這類題的顯著特點(diǎn)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年寧夏銀川一中高一第二學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知向量="(sinA,cosA), " =,,且A為銳角.
(1)求角A的大。
(2)求函數(shù)取最大值時(shí)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏高三上學(xué)期期末考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知向量=(sinA ,sinB),=(cosB,cosA),且A、B、C分別為△ABC的三邊所對的角。
(Ⅰ)求角C的大小;
(Ⅱ)若,求c邊的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年寧夏高一第二學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知向量=(sinA,cosA), =,,且A為銳角.
(1)求角A的大;
(2)求函數(shù)取最大值時(shí)x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知向量=(sinA,cosA), =,,且A為銳角.
(1)求角A的大;
(2)求函數(shù)取最大值時(shí)x的集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com