已知函數(shù)f(n)=log(n+1)(n+2)(n為正整數(shù)),若存在正整數(shù)k滿足:f(1)•f(2)•f(3)…f(n)=k,那么我們將k叫做關(guān)于n的“對整數(shù)”.當(dāng)n∈[1,100]時(shí),則“對整數(shù)”的個(gè)數(shù)為    個(gè).
【答案】分析:由題意,f(x)=log(x+1) (x+2)=,再計(jì)算f(1)f(2)f(3)…f(x)=log2(x+2),根據(jù)1≤x≤100,得log23≤log2(x+2)≤log2102,從而可得“對整數(shù)”的個(gè)數(shù).
解答:解:由題意,f(x)=log(x+1) (x+2)=,所以k=f(1)f(2)f(3)…f(x)=log2(x+2)
∵1≤x≤100,∴l(xiāng)og23≤log2(x+2)≤log2102
整數(shù)有l(wèi)og24,log28,log216,log232,log264,即2,3,4 5,6五個(gè)整數(shù)
故答案為5
點(diǎn)評:本題的考點(diǎn)排列、組合的實(shí)際應(yīng)用,主要考查新定義,考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
kx-(k+1)x

(1)若函數(shù)f(x)是(0,+∞)上的增函數(shù),求k的取值范圍;
(2)證明:當(dāng)k=2時(shí),不等式f(x)<lnx對任意x>0恒成立;
(3)證明:ln(1×2)+ln(2×3)+L+ln[n(n+1)]>2n-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③已知空間直線m,n,l,則m∥n的一個(gè)必要非充分條件是m,n與l所成角相等;
④已知函數(shù)f(x)=log2x+logx2+1,
 &x∈(0,1)
,則f(x)的最大值為-1.
其中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m,n∈R,m≠0),函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處切線與x軸平行,
(1)用關(guān)于m的代數(shù)式表示n;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)若x1>2,記函數(shù)y=f(x)的圖象在點(diǎn)M(x1,f(x1))處的切線l與x軸的交點(diǎn)為(x2,0),證明:x2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•成都一模)已知函數(shù)f(x)=
1
2
x2-mln
1+2x
+mx-2m
,m<0.
(I)當(dāng)m=-1時(shí),求函數(shù)y=f(x)-
x
3
的單調(diào)區(qū)間;
(II)已知m≤-
e
2
(其中e是自然對數(shù)的底數(shù)),若存在實(shí)數(shù)x0∈(-
1
2
,
e-1
2
]
,使f(x0)>e+1成立,證明:2m+e+l<0;
(III)證明:
n
k=1
8k-3
3k2
>ln
(n+1)(n+2)
2
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在區(qū)間[n, m]上為減函數(shù),記m的最大值為m0,n的最小值為n0,且滿足m0-n0 = 4.

(1)求m0,n0的值以及函數(shù)f (x)的解析式;

(2)已知等差數(shù)列{xn}的首項(xiàng).又過點(diǎn)A(0, f (0)),B(1, f (1))的直線方程為y=g(x).試問:在數(shù)列{xn}中,哪些項(xiàng)滿足f (xn)>g(xn)?

(3)若對任意x1,x2∈ [a, m0](x1x2),都有成立,求a的最小值.

查看答案和解析>>

同步練習(xí)冊答案