設,分別是橢圓:的左、右焦點,過點的直線交橢圓于兩點,
(1)若的周長為16,求;
(2)若,求橢圓的離心率.
科目:高中數(shù)學 來源: 題型:解答題
已知F1,F(xiàn)2是橢圓C:+=1(a>b>0)的左、右焦點,點P(-,1)在橢圓上,線段PF2與y軸的交點M滿足+=0.
(1)求橢圓C的方程;
(2)橢圓C上任一動點N(x0,y0)關于直線y=2x的對稱點為N1(x1,y1),求3x1-4y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.
(1)求雙曲線的離心率;
(2)如圖,為坐標原點,動直線分別交直線于兩點(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
圓的切線與x軸正半軸,y軸正半軸圍成一個三角形,當該三角形面積最小時,切點為P(如圖),雙曲線過點P且離心率為.
(1)求的方程;
(2)橢圓過點P且與有相同的焦點,直線過的右焦點且與交于A,B兩點,若以線段AB為直徑的圓心過點P,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓經(jīng)過點,離心率,直線與橢圓交于,兩點,向量,,且.
(1)求橢圓的方程;
(2)當直線過橢圓的焦點(為半焦距)時,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知拋物線C:的焦點為F,直線與y軸的交點為P,與C的交點為Q,且.
(1)求C的方程;
(2)過F的直線與C相交于A,B兩點,若AB的垂直平分線與C相較于M,N兩點,且A,M,B,N四點在同一圓上,求的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓C的兩焦點分別為,長軸長為6,
⑴求橢圓C的標準方程;
⑵已知過點(0,2)且斜率為1的直線交橢圓C于A 、B兩點,求線段AB的長度。.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com