函數(shù)f(x)=x-lnx,xÎ[2,3]的最大值________,最小值________。

 

答案:3(ln3 2(ln2。
解析:

因為所以函數(shù)f(x)=x-lnx,xÎ[2,3]是增函數(shù),故最大值為f(3)=3-ln3,最小值f(2)=2-ln2。

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(1,0),求p的值;
(3)若在[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l,使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為l上的高調(diào)函數(shù),如果定義域是[0,+∞)的函數(shù)f(x)=(x-1)2為[0,+∞)上的m高調(diào)函數(shù),那么實數(shù)m的取值范圍是
[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
2
x
+6
,其中a為實常數(shù).
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數(shù)f(x)圖象上兩點,若在點P1,P2處的兩條切線相互平行,求這兩條切線間距離的最大值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=s(x)在點P(x0,y0)處的切線方程為l:y=t(x),當(dāng)x≠x0時,若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱點P為函數(shù)y=s(x)的“好點”.試問函數(shù)g(x)=x2f(x)是否存在“好點”.若存在,請求出所有“好點”坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)對于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:
函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數(shù)h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設(shè)bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數(shù)列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標(biāo)為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5

(3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請問,是否存在一個定義域為R的函數(shù)y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•樂山二模)設(shè)函數(shù)f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的圖象關(guān)于原點對稱,且x=1時,f(x)取得極小值-
23

(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[-1,1]時,函數(shù)f(x)的圖象上是否存在兩點,使得過此兩點處的切線相互垂直?試說明你的結(jié)論;
(3)設(shè)f(x)表示的曲線為G,過點(1,-10)作曲線G的切線l,求l的方程.

查看答案和解析>>

同步練習(xí)冊答案