已知曲線c1:y=ex,曲線c2:y=cosx,則由曲線c1,c2和直線x=在第一象限所圍成的封閉圖形的面積為   
【答案】分析:作出圖形,則所求的封閉圖形的面積S=,解出即可.
解答:解:作出曲線c1:y=ex,曲線c2:y=cosx,則由曲線c1,c2和直線x=,如圖所示:
則所求的封閉圖形的面積S===
故答案為
點(diǎn)評:理解定積分的意義是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:y=ax2+b和曲線C2:y=2blnx(a,b∈R)均與直線l:y=2x相切.
(1)求實(shí)數(shù)a、b的值;
(2)設(shè)直線x=t(t>0)與曲線C1,C2及直線l分別相交于點(diǎn)M,N,P,記f(t)=|MP|-|NP|,求f(t)在區(qū)間(0,e](e為自然對數(shù)的底)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線c1:y=ex,曲線c2:y=cosx,則由曲線c1,c2和直線x=
π
2
在第一象限所圍成的封閉圖形的面積為
e
π
2
-2
e
π
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:y=
x2e
+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點(diǎn);
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1:y=數(shù)學(xué)公式+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點(diǎn);
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省三明二中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知曲線C1:y=+e(e為自然對數(shù)的底數(shù)),曲線C2:y=2elnx和直線m:y=2x.
(I)求證:直線m與曲線C1、C2都相切,且切于同一點(diǎn);
(II)設(shè)直線x=t(t>0)與曲線C1、C2及直線m分別交于M、N、P,記f(t)=|MP|-|PN|,求f(t)在[e-3,e3]上的最大值.

查看答案和解析>>

同步練習(xí)冊答案