(本題滿分12分)函數(shù)f(x)=(a〉0,且a≠1)在區(qū)間[1,2]上的最大值比最小值大,求a的值。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

若函數(shù)為定義域上單調函數(shù),且存在區(qū)間(其中),使得當時,的取值范圍恰為,則稱函數(shù)上的正函數(shù),區(qū)間叫做等域區(qū)間.
(1)已知上的正函數(shù),求的等域區(qū)間;
(2)試探究是否存在實數(shù),使得函數(shù)上的正函數(shù)?若存在,請求出實數(shù)的取值范圍;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)利用單調函數(shù)的定義證明:函數(shù)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)設是定義在上的函數(shù),且對任意,當時,都有;
(1)當時,比較的大;
(2)解不等式;
(3)設,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)已知函數(shù),其中.
(1)求的解析式;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)已知的反函數(shù)為
(1)若函數(shù)在區(qū)間上單增,求實數(shù)的取值范圍;
(2)若關于的方程內有兩個不相等的實數(shù)根,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)是定義在[-1,1]上的奇函數(shù),且對任意的實數(shù)a,b∈[-1,1],當a+b
≠0時,都有>0.
(1)若a>b,試比較f(a)與f(b)的大小;
(2)解不等式f(x)<f(x-);
(3)如果g(x)=f(x-c)和h(x)=f(x-c2)這兩個函數(shù)的定義域的交集是空集,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)在(-1,1)上有定義,當且僅當0<x<1時f(x)<0,且對任意x、y∈(-1,1)都有f(x)+f(y)=f,試證明:
(1)f(x)為奇函數(shù);
(2)f(x)在(-1,1)上單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

本題8分)
已知,且,.
(1)求解析式
(2)判斷函數(shù)的單調性,并給予證明

查看答案和解析>>

同步練習冊答案