已知橢圓C:(a>b>0).F1,F(xiàn)2分別為橢圓C的左,右焦點(diǎn),A1,A2分別為橢圓C的左,右頂點(diǎn).過(guò)右焦點(diǎn)F2且垂直于x軸的直線(xiàn)與橢圓C在第一象限的交點(diǎn)為M(,2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)l:x=my+1與橢圓C交于P,Q兩點(diǎn),直線(xiàn)A1P與A2Q交于點(diǎn)S.當(dāng)直線(xiàn)l變化時(shí),點(diǎn)S是否恒在一條定直線(xiàn)上?若是,求此定直線(xiàn)方程;若不是,請(qǐng)說(shuō)明理由.
解:(1),.點(diǎn)在橢圓上, ,, ,或(舍去).. 橢圓的方程為;4分 (2)當(dāng)軸時(shí),,,又, ,,聯(lián)立解得. 當(dāng)過(guò)橢圓的上頂點(diǎn)時(shí),,, ,,聯(lián)立解得. 若定直線(xiàn)存在,則方程應(yīng)是;8分 下面給予證明. 把代入橢圓方程,整理得, 成立,記,,則,. , 當(dāng)時(shí),縱坐標(biāo)應(yīng)相等,,須 須,須 而成立. 綜上,定直線(xiàn)方程為;14分 (其它解法酌情給分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題
已知橢圓C:+=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的方程;
(2)當(dāng)△AMN的面積為時(shí),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:選擇題
已知橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線(xiàn)相交于A,B兩點(diǎn),連接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,則C的離心率為( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省高三8月第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿(mǎn)分14分)
已知橢圓C:(a>b>0)的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)過(guò)橢圓C上的動(dòng)點(diǎn)P引圓O:x2+y2=b2的兩條切線(xiàn)PA、PB,A、B分別為切點(diǎn),試探究橢圓C上是否存在點(diǎn)P,由點(diǎn)P向圓O所引的兩條切線(xiàn)互相垂直?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年遼寧省高二上學(xué)期期末考試數(shù)學(xué)文卷 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓C:(a>b>0)的離心率為短軸一個(gè)端點(diǎn)到右焦點(diǎn)的
距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l與橢圓C交于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O到直線(xiàn)l的距離為,求△AOB面積的
最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com