【題目】下列四種說法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是
說法錯誤的個數(shù)是(
A.1
B.2
C.3
D.4

【答案】C
【解析】解:①命題“存在x∈R,x2﹣x>0”的否定是“對于任意x∈R,x2﹣x≤0”,故①不正確;
②命題“p且q為真”,則命題p、q均為真,所以“p或q為真”.反之“p或q為真”,則p、q不見得都真,所以不一定有“p且q為真”所以命題“p且q為真”是“p或q為真”的充分不必要條件,故命題②不正確;
③由冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2, ),所以2α= ,所以α=﹣ ,所以冪函數(shù)為f(x)= ,所以f(4)= ,所以命題③正確;
④∵向量 =(3,﹣4), =(2,1),∴ =3×2+(﹣4)×1=2,| |= ,∴向量 在向量 的方向上的投影為: = ,故④不正確.
故選:C.
【考點(diǎn)精析】掌握命題的真假判斷與應(yīng)用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為:為參數(shù)).

(1)求圓和直線l的極坐標(biāo)方程;

(2)點(diǎn)的極坐標(biāo)為,直線l與圓相交于A,B,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入,則輸出的的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一塊邊長為的正三角形薄鐵片,按如圖所示設(shè)計方案,裁剪下三個全等的四邊形(每個四邊形中有且只有一組對角為直角),然后用余下的部分加工制作成一個“無蓋”的正三棱柱(底面是正三角形的直棱柱)形容器.

(Ⅰ)請將加工制作出來的這個“無蓋”的正三棱柱形容器的容積表示為關(guān)于的函數(shù),并標(biāo)明其定義域;

(Ⅱ)若加工人員為了充分利用邊角料,考慮在加工過程中,使用裁剪下的三個四邊形材料恰好拼接成這個正三棱柱形容器的“頂蓋”.

(1)請指出此時的值(不用說明理由),并求出這個封閉的正三棱柱形容器的側(cè)面積

(2)若還需要在該正三棱柱形容器中放入一個金屬球體,試求該金屬球體的最大體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

,求函數(shù)在區(qū)間上的取值范圍;

,且對任意的,都有,求實數(shù)a的取值范圍.

若對任意的,都有,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,武漢市出現(xiàn)了非常嚴(yán)重的霧霾天氣,而燃放煙花爆竹會加重霧霾,是否應(yīng)該全面禁放煙花爆竹已成為人們議論的一個話題.武漢市環(huán)保部門就是否贊成禁放煙花爆竹,對400位老年人和中青年市民進(jìn)行了隨機(jī)問卷調(diào)查,結(jié)果如下表:

贊成禁放

不贊成禁放

合計

老年人

60

140

200

中青年人

80

120

200

合計

140

260

400

附:K2=

P(k2>k0

0.050

0.025

0.010

k0

3.841

5.024

6.635


(1)有多大的把握認(rèn)為“是否贊成禁放煙花爆竹”與“年齡結(jié)構(gòu)”有關(guān)?請說明理由;
(2)從上述不贊成禁放煙花爆竹的市民中按年齡結(jié)構(gòu)分層抽樣出13人,再從這13人中隨機(jī)的挑選2人,了解他們春節(jié)期間在煙花爆竹上消費(fèi)的情況.假設(shè)一位老年人花費(fèi)500元,一位中青年人花費(fèi)1000元,用X表示它們在煙花爆竹上消費(fèi)的總費(fèi)用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為菱形,∠BAD=60°,Q是AD的中點(diǎn).

(1)若PA=PD,求證:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在線段PC上是否存在點(diǎn)M,使二面角M﹣BQ﹣C的大小為60°.若存在,試確定點(diǎn)M的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(  )

A. x>1,則2x>1”的否命題為真命題

B. cosβ=1,則sinβ=0”的逆命題是真命題

C. 若平面向量a,b共線,則a,b方向相同的逆否命題為假命題

D. 命題x>1,則xa的逆命題為真命題,則a>0

查看答案和解析>>

同步練習(xí)冊答案