【題目】如圖,在正方體中,若是線段上的動點,則下列結論不正確的是(  )

A. 三棱錐的正視圖面積是定值

B. 異面直線,所成的角可為

C. 異面直線,所成的角為

D. 直線與平面所成的角可為

【答案】D

【解析】

判斷主視圖的底與高是否發(fā)生變化來判斷,利用幾何法以及建立空間坐標系將線線角以及線面角的關系轉化為向量的關系來判斷

對于,三棱錐的主視圖為三角形,底邊為的長,高為正方體的高,故棱錐的主視圖面積不變,故正確;

對于,分別以,為坐標軸,以為原點建立空間直角坐標系,設正方體邊長為1,,,,

,∴,時,方程有解,異面直線,所成的角可為,B正確

對于,連結,,,則,∵,∴,

又∵,于是平面,∵平面,∴,故C正確;

對于,結合B中的坐標系,可得面的法向量為,,

所以,令方程無解,即直線與平面所成的角可為是錯誤的,故選D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解市民對某項政策的態(tài)度,隨機抽取了男性市民25人,女性市民75人進行調查,得到以下的列聯(lián)表:

支持

不支持

合計

男性

20

5

25

女性

40

35

75

合計

60

40

100

根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為市民“支持政策”與“性別”有關?

將上述調查所得的頻率視為概率,現(xiàn)在從所有市民中,采用隨機抽樣的方法抽取4位市民進行長期跟蹤調查,記被抽取的4位市民中持“支持”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望。

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四邊形ABCD中,∠D=2∠B,且AD=1,CD=3,cos∠B=

(1)求△ACD的面積;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)滿足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),則ω的一個可能取值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點的橫坐標構成一個公差為 的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的圖象,只需將f(x)的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在直線上.求:

(1) AD邊所在直線的方程;

(2) DC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分) 已知P3,2),一直線過點P,

若直線在兩坐標軸上截距之和為12,求直線的方程;

若直線x、y軸正半軸交于A、B兩點,當面積為12時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)今年初用72萬元購買一套新設備用于生產,該設備第一年需各種費用12萬元,從第二年起,每年所需費用均比上一年增加4萬元,該設備每年的總收入為50萬元,設生產x年的 盈利總額為y萬元.寫出y與x的關系式;

①經過幾年生產,盈利總額達到最大值?最大值為多少?

②經過幾年生產,年平均盈利達到最大值?最大值為多少

查看答案和解析>>

同步練習冊答案