精英家教網 > 高中數學 > 題目詳情
如圖,在棱長為的正方體中,異面直線所成的角等于(   )
A.  B.C.D.
D
此題考查異面直線所成的角
平移到,那么所成的角等于所成的夾角,大小為
答案  D
點評:將異面直線平移到同一平面,再求其所成的角
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖6,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,EF⊥PB交PB于點F.

(Ⅰ) 若PD=DC=2求三棱錐A-BDE的體積;
(Ⅱ) 證明PA∥平面EDB;
(Ⅲ) 證明PB⊥平面EFD.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四邊形為矩形,且,上的動點.
(1) 當的中點時,求證:;
(2) 設,在線段上存在這樣的點E,使得二面角的平面角大小為. 試確定點E的位置.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在四棱錐P-ABCD中,底面ABCD是正方形,PD底面ABCD,M,N分別PA,BC的中點,且PD="AD=1" (12分)
(1)求證:MN∥平面PCD
(2)求證:平面PAC平面PBD
(3)求MN與底面ABCD所成角的大小

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐中,中點。(1)求證:平面
(2)在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)

如圖,四邊形ABCD為正方形,QA⊥平面ABCDPDQA,QA=AB=PD
(I)證明:PQ⊥平面DCQ;
(II)求棱錐QABCD的的體積與棱錐PDCQ的體積的比值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)已知在直四棱柱ABCDA1B1C1D1中,底面ABCD為直角梯形,且滿足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8,E,F分別是線段A1A,BC上的點.
(1) 若A1E=5,BF=10,求證:BE∥平面A1FD.
(2) 若BD⊥A1F,求三棱錐A1AB1F的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,正方中,、分別是棱的中點,則直線與直線所成角的大小     

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

有三個球和一個正方體,第一個球與正方體各個面相切,第二個球與正方體各條棱相切,第三個球過正方體個頂點,則這三個球的表面積之比為                     

查看答案和解析>>

同步練習冊答案