已知正方形ABCD的邊長(zhǎng)為6,空間有一點(diǎn)M(不在平面ABCD內(nèi))滿(mǎn)足|MA|+|MB|=10,則三棱錐A-BCM的體積的最大值是( 。
A、48B、36C、30D、24
分析:由三棱錐A-BCM的體積=三棱錐M-ABC的體積,底面△ABC的面積一定,高最大時(shí),其體積最大;又高由頂點(diǎn)M確定,所以,
當(dāng)平面MAB⊥平面ABCD時(shí),高最大,體積也最大.
解答:精英家教網(wǎng)解:如圖,由題意知,因?yàn)槿忮FA-BCM的體積=三棱錐M-ABC的體積,
底面△ABC的面積一定,當(dāng)高最大時(shí),體積最大;
當(dāng)平面MAB⊥平面ABCD時(shí),過(guò)點(diǎn)M作MN⊥AB,則MN⊥平面ABCD,
在△MAB中,|MA|+|MB|=10,AB=6,
顯然,當(dāng)|MA|=|MB|=5時(shí),高M(jìn)N最大,并且MN=
MA2-AN2
=
52-32
=4,
所以,三棱錐A-BCM的最大體積為:VA-BCM=VM-ABC=
1
3
•S△ABC•MN=
1
3
×
1
2
×6×6×4=24.
故選D
點(diǎn)評(píng):本題通過(guò)作圖知,側(cè)面與底面垂直時(shí),得出高最大時(shí)體積也最大;其解題的關(guān)鍵是正確作圖,得高何時(shí)最大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線(xiàn)方程為x+3y-5=0,求其它三邊所在的直線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)是4,對(duì)角線(xiàn)AC與BD交于O,將正方形ABCD沿對(duì)角線(xiàn)BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為1,設(shè)
AB
=
a
,
BC
=
b
AC
=
c
,則|
a
-
b
+
c
|等于(  )
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD的邊長(zhǎng)為
2
,
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案