函數(shù)f(x)=cos(x+
π
2
)•cosx的最小正周期是 (  )
分析:利用誘導(dǎo)公式化余弦為正弦,然后利用二倍角的正弦公式化簡,則函數(shù)f(x)的周期可求.
解答:解:∵f(x)=cos(x+
π
2
)•cosx=-sinx•cosx=-
1
2
sin2x.
∴f(x)的最小正周期為
2
=π.
故選:B.
點(diǎn)評(píng):本題考查了誘導(dǎo)公式的應(yīng)用,考查了二倍角的正弦公式,訓(xùn)練了三角函數(shù)周期的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
cos(0<x<π)
g(x)(-π<x<0)
是奇函數(shù),則函數(shù)g(x)的解析式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+?)滿足f(x)≤f(1)對(duì)x∈R恒成立,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cosπx與函數(shù)g(x)=|log2|x-1||的圖象所有交點(diǎn)的橫坐標(biāo)之和為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=cos(2x+θ)+
3
sin(2x+θ)是偶函數(shù),則θ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案