已知拋物線C1y2=2px(p>0)的焦點(diǎn)F也是雙曲線C2
x2
4
-
y2
5
=1
的一個(gè)焦點(diǎn),過(guò)F作直線l與x軸垂直,l與C1交于A,B兩點(diǎn),l與C2交于C,D兩點(diǎn),則AB-CD=
7
7
分析:先根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求得c,進(jìn)而求得拋物線方程中的P,則拋物線方程可得,最后計(jì)算線段的長(zhǎng)即可得出答案.
解答:解:雙曲線方程C2
x2
4
-
y2
5
=1
得:
a=2,b=
5
,c=3.
∴雙曲線一個(gè)焦點(diǎn)坐標(biāo)為F(3,0)
∴拋物線的焦點(diǎn)坐標(biāo)為F(3,0)
∴p=6,
∴拋物線的方程為y2=12x,
∴CD=2CF=2×
b2
a
=5,
AB=2AF=2
12×3
=12,
則AB-CD=7.
故答案為:7.
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì),圓錐曲線的共同特征.考查了學(xué)生對(duì)基礎(chǔ)知識(shí)的綜合把握能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y2=4mx(m>0)的焦點(diǎn)為F2,其準(zhǔn)線與x軸交于點(diǎn)F1,以F1,F(xiàn)2為焦點(diǎn),離心率為
12
的橢圓C2與拋物線C1在x軸上方的一個(gè)交點(diǎn)為P.
(1)當(dāng)m=1時(shí),求橢圓的標(biāo)準(zhǔn)方程及其右準(zhǔn)線的方程;
(2)用m表示P點(diǎn)的坐標(biāo);
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù)m;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y2=x+7,圓C2:x2+y2=5.
(1)求證拋物線與圓沒(méi)有公共點(diǎn);
(2)過(guò)點(diǎn)P(a,0)作與x軸不垂直的直線l交C1,C2依次為A、B、C、D,若|AB|=|CD|,求實(shí)數(shù)a的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河北模擬)已知拋物線C1:y2=2px和圓C2(x-
p
2
)
2
+y2=
p2
4
,其中p>0,直線l經(jīng)過(guò)C1的焦點(diǎn),依次交C1,C2于A,B,C,D四點(diǎn),則
AB
CD
的值為
p2
4
p2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y2=2px(p>0)的焦點(diǎn)F以及橢圓C2
y2
a2
+
y2
b2
=1,(a>b>0)
的上、下焦點(diǎn)及左、右頂點(diǎn)均在圓O:x2+y2=1上.
(Ⅰ)求拋物線C1和橢圓C2的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)F的直線交拋物線C1于A、B兩不同點(diǎn),交y軸于點(diǎn)N,已知
NA
=λ1
AF
, 
NB
 =λ2
BF
,求證:λ12為定值.
(Ⅲ)直線l交橢圓C2于P、Q兩不同點(diǎn),P、Q在x軸的射影分別為P'、Q',
OP
OQ
+
OP′
OQ′
 +1=0
,若點(diǎn)S滿足:
OS
OP
 +
OQ
,證明:點(diǎn)S在橢圓C2上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線C1:y2=4x,圓C2:(x-1)2+y2=1,過(guò)拋物線焦點(diǎn)F的直線l交C1于A,D兩點(diǎn)(點(diǎn)A在x軸上方),直線l交C2于B,C兩點(diǎn)(點(diǎn)B在x軸上方).
(Ⅰ)求|AB|•|CD|的值;
(Ⅱ)設(shè)直線OA、OB、OC、OD的斜率分別為m、n、p、q,且滿足m+n+p+q=3
2
,并且|AB|,|BC|,|CD|成等差數(shù)列,求出所有滿足條件的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案