若n∈N*,n<100,且二項(xiàng)式數(shù)學(xué)公式的展開式中存在常數(shù)項(xiàng),則所有滿足條件的n值的和是________.

950
分析:寫出二項(xiàng)式的展開式的通項(xiàng),令x的指數(shù)為0,可得n是5的倍數(shù),結(jié)合n<100,即可求得所有滿足條件的n值的和.
解答:二項(xiàng)式的展開式的通項(xiàng)為=
令3n-5r=0,可得3n=5r
∴n是5的倍數(shù)
∵n<100
∴所有滿足條件的n值的和=5+10+…+95=950
故答案為:950
點(diǎn)評:本題考查二項(xiàng)式定理的運(yùn)用,考查展開式中的特殊性,確定展開式的通項(xiàng)是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q(q>1).設(shè)sn=a1b1+a2b2+…+anbn,Tn=a1b1-a2b2+…+(-1)n-1anbn,n∈N+,
(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;
(Ⅱ)若b1(6)=1,證明(1-q)S2n-(1+q)T2n=
2dq(1-q2n)1-q2
,n∈(10)N+;
(Ⅲ)若正數(shù)n滿足2≤n≤q,設(shè)k1,k2,…,kn和l1,l2,…,ln是1,2,…,n的兩個不同的排列,c1=ak1b1+ak2b2+…+aknbn,c2=al1b1+al2b2+…+alnbn證明c1≠c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、若f(n)表示n2+1(n∈N*)的各位數(shù)字之和,如:62=36,36+1=37,3+7=10,則f(6)=10,記f1(n)=f(n),f2(n)=f(f1(n)),…fk+1(n)=f(fk(n))(k∈N*),則f2009(8)=
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、若隨機(jī)變量ξ~N(10,σ2),P(9≤ξ≤11)=0.4,則P(ξ≥11)=
0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為建設(shè)好長、株、潭“兩型社會”改革實(shí)驗(yàn)區(qū),加快二市經(jīng)濟(jì)一體化進(jìn)程,某規(guī)劃部門在三市的交界處擬建一個大型環(huán)保生態(tài)公園,并在公園入口處的東南方位建造一個供市民休閑健身的小型綠化廣場,如圖是步行小道設(shè)計(jì)方案示意圖,其中,Ox,Oy分別表示自西向東,自南向北的兩條主干道,設(shè)計(jì)方案是自主干道交匯點(diǎn)O處修一條步行小道,小道為拋物線y=x2的一段,在小道上依次以點(diǎn)P1(x1y1),P2(x2,y2),…,P(xn,yn)(n≥10,n∈N*)為圓心,修一系列圓型小道,且這些圓型小道與主干道Ox分別于相切于A1,A2,…,An,…,且任意相鄰的兩圓彼此外切,若x1=1(單位:百米),且xn+1<xn
(1)記⊙P1,⊙P2,…,⊙Pn,…的半徑rn組成的數(shù)列為{rn},求通項(xiàng)公式rn;
(2)若修建這些圓形小道工程預(yù)算總費(fèi)用為50萬元,根據(jù)以往施工經(jīng)驗(yàn)可知,面積為S的圓形小道的實(shí)際施工費(fèi)用為10
πS
萬元,試問修建好前n(n≥10,n∈N*)個圓型小道,預(yù)算費(fèi)用是否夠用,請說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=b+ax2+2x,(a,b是常數(shù)a>0且a≠1)在區(qū)間[-
3
2
,0
]上有ymax=3,ymin=
5
2

(1)求a,b的值;
(2)若a∈N*當(dāng)y>10時,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案