A. | 126 | B. | 63 | C. | 64 | D. | 127 |
分析 先由5a2是a4與3a3的等差中項(xiàng),推得a2q2+3a2q=10a2⇒q=-5或q=2.再結(jié)合數(shù)列各項(xiàng)為正,即可的公比和首項(xiàng),再代入等比數(shù)列的求和公式即可求得答案.
解答 解:∵5a2是a4與3a3的等差中項(xiàng),
∴a4+3a3=2×5a2⇒a2q2+3a2q=10a2.
又∵a2=2,
∴q2+3q-10=0⇒q=-5或q=2.
∵正項(xiàng)數(shù)列{an}
∴q=2,故a1=$\frac{{a}_{2}}{q}$=1.
∴s6=$\frac{2×(1-{2}^{6})}{1-2}$=126.
故選:A.
點(diǎn)評(píng) 本題的易錯(cuò)點(diǎn)在于忘記條件數(shù)列各項(xiàng)為正的限制,從而求錯(cuò)結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1]∪[1,+∞) | B. | (-∞,-1]∪[0,+∞) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{169π}{6}$cm3 | B. | $\frac{676π}{3}$cm3 | C. | $\frac{8788π}{3}$cm3 | D. | $\frac{2197π}{6}$cm3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $x=\frac{π}{3}$ | B. | $x=\frac{2π}{3}$ | C. | $x=\frac{5π}{12}$ | D. | $x=\frac{7π}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+2y-5=0 | B. | 2x+y-5=0 | C. | x-2y+5=0 | D. | 2x-y+5=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com