一個袋子里裝有7個球,其中有紅球4個, 編號分別為1,2,3,4;白球3個,編號分別為1,2,3.從袋子中任取4個球(假設(shè)取到任何一個球的可能性相同).
(Ⅰ)求取出的4個球中, 含有編號為3的球的概率;
(Ⅱ)在取出的4個球中, 紅球編號的最大值設(shè)為X,求隨機變量X的分布列和數(shù)學(xué)期望.
(Ⅰ);(Ⅱ)
.X 1 2 3 4 P
解析試題分析:(Ⅰ)分別算出取出四個球的取法數(shù)以及取出的4個球中含有編號為3的球的取法種數(shù),后者與前者之比即為所求.(Ⅱ)可知隨機變量X的所有可能取值為1,2,3,4.然后將每種可能取值的概率計算出,即可列出分布表.再由期望的計算公式即可得出期望.
試題解析:(Ⅰ)設(shè)“取出的4個球中,含有編號為3的球”為事件A,
由題意,取出四個球共有取法.其中含有編號為3的球的取法有種.
則.
所以,取出的4個球中,含有編號為3的球的概率為. 4分
(Ⅱ)隨機變量X的所有可能取值為1,2,3,4.
, ,
, , 8分
所以隨機變量X的分布列是
隨機變量X的數(shù)學(xué)期望. 12分X 1 2 3 4 P
考點:1.隨機事件的概率;2.離散型隨機變量及分布列;3.期望.
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高中為了推進新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級開始,在每周的周一、周三、周五的課外活動期間同時開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座。(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時稱為滿座,否則稱為不滿座)統(tǒng)計數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:
根據(jù)上表:
(Ⅰ)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(Ⅱ)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一個盒子里裝有4枝圓珠筆,其中3枝一等品,1枝三等品
(1)從盒子里任取2枝恰有1枝三等品的概率多大?
(2)從盒子里第一次任取1枝(不放回),第二次任取1枝;第一次取的是三等品,第二次取的是一等品的概率有多大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某品牌的汽車4S店,對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
頻數(shù) | 40 | 20 | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某種產(chǎn)品按質(zhì)量標(biāo)準(zhǔn)分為,,,,五個等級.現(xiàn)從一批該產(chǎn)品隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下:
等級 | |||||
頻率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在某次測驗中,有6位同學(xué)的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學(xué)所得成績,且前5位同學(xué)的成績?nèi)缦拢?,2,3,4,5
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某旅游公司提供甲、乙、丙三處旅游景點,游客選擇游玩哪個景點互不影響,已知某游客選擇游甲地而不選擇游乙地和丙地的概率為0.08,選擇游甲地和乙地而不選擇游丙地的概率為0.12,在甲、乙、丙三處旅游景點中至少選擇游一個景點0.88,用表示游客在甲、乙、丙三處旅游景點中選擇游玩的景點數(shù)和沒有選擇游玩的景點數(shù)的乘積.
(Ⅰ)記“函數(shù)是R上的偶函數(shù)”為事件A,求事件A的概率;
(Ⅱ)求的概率分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
福彩中心發(fā)行彩票的目的是為了獲取資金資助福利事業(yè),現(xiàn)在福彩中心準(zhǔn)備發(fā)行一種面值為5元的福利彩票刮刮卡,設(shè)計方案如下:(1)該福利彩票中獎率為50%;(2)每張中獎彩票的中獎獎金有5元,50元和150元三種;(3)顧客購買一張彩票獲得150元獎金的概率為,獲得50元獎金的概率為.
(I)假設(shè)某顧客一次性花10元購買兩張彩票,求其至少有一張彩票中獎的概率;
(II)為了能夠籌得資金資助福利事業(yè), 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com