已知x>0,y>0.用分析法證明:(x2+y2)
1
2
>(x3+y3)
1
3
分析:由x>0,y>0,知要證(x2+y2)
1
2
>(x3+y3)
1
3
,只要證(x2+y23>(x3+y32,即證3x2+3y2>2xy就可以.
解答:證明:∵x>0,y>0.∴要證(x2+y2)
1
2
>(x3+y3)
1
3

只要證(x2+y23>(x3+y32(4分)
即證3x2+3y2>2xy(*)
∵3x2+3y2-2xy=2(x2+y2)+(x-y)2>0
∴(*)成立.故原不等式成立.(9分)
點(diǎn)評:本題考查不等式的證明,解題時(shí)要注意利用分析法進(jìn)行證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0且x+y=xy,則x+y的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

(2007寧夏,7)已知x0,y0xa,b,y成等差數(shù)列,x,cd,y成等比數(shù)列,則的最小值是

[  ]

A0

B1

C2

D4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省合肥八中2012屆高三第三次段考數(shù)學(xué)理科試題 題型:013

已知x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則的最小值是

[  ]
A.

0

B.

1

C.

2

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一下學(xué)期第7周周練數(shù)學(xué)試卷(解析版) 題型:選擇題

已知x>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則的最小值是(  ) A.0  B.1  C.2  D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知集合M={(x,y)|x+y=1},映射f:M→N,在f作用下點(diǎn)(x,y)的象是(2x,2y),則集合N=


  1. A.
    {(x,y)|x+y=2,x>0,y>0}
  2. B.
    {(x,y)|xy=1,x>0,y>0}
  3. C.
    {(x,y)|xy=2,x<0,y<0}
  4. D.
    {(x,y)|xy=2,x>0,y>0}

查看答案和解析>>

同步練習(xí)冊答案