實驗女排和育才女排兩隊進行比賽,在一局比賽中實驗女排獲勝的概率是2/3,沒有平局.若采用三局兩勝制,即先勝兩局者獲勝且比賽結束,則實驗女排獲勝的概率等于
A.B.C.D.
B

試題分析:實驗女排要獲勝必須贏得其中兩局,可以是1,2局,也可以是1,3局,也可以是2,3局.故獲勝的概率為:,故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在我軍的一場模擬空戰(zhàn)演習中,我軍甲、乙、丙三名飛行員向同一假想敵機炮擊,已知甲乙丙三名飛行員擊中敵機的概率分別為0.4、0.5和0.7。
(1)求敵機被擊中的概率;
(2)若一名飛行員擊中,敵機墜毀的概率是0.2,若兩名飛行員擊中,敵機墜毀的概率是0.6,若三名飛行員擊中,則敵機必然墜毀,求敵機墜毀的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

為了解某班關注NBA(美國職業(yè)籃球)是否與性別有關,對某班48人進行了問卷調(diào)查得到如下的列聯(lián)表:
 
關注NBA
不關注NBA
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
 
已知在全班48人中隨機抽取1人,抽到關注NBA的學生的概率為.
(1)請將上面的表補充完整(不用寫計算過程),并判斷是否有95%的把握認為關注NBA與性別有關?說明你的理由;
(2)設甲,乙是不關注NBA的6名男生中的兩人,丙,丁,戊是關注NBA的10名女生中的3人,從這5人中選取2人進行調(diào)查,求:甲,乙至少有一人被選中的概率.
答題參考
P(K2≥k)
0.10
0.05
0.010
0.005
k0
2.706
3.841
6.635
7.879
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

甲、乙兩人將參加某項測試,他們能達標的概率都是0.8,設隨機變量為兩人中能達標的人數(shù),則的數(shù)學期望        .   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

將一個半徑適當?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球將自由下落.小球在
下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求小球落入袋中的概率
(Ⅱ)在容器入口處依次放入4個小球,記為落入袋中的小球個數(shù),試求的概率和的數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

種植兩株不同的花卉,它們的存活率分別為pq,則恰有一株存活的概率為(    )
A.p+q-2pqB.p+qpqC. p+qD.pq

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X的分布列為P(X=k)=pk(1-p)1-k(k=0.1,0<p<1),則E(X)=________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

甲、乙、丙三名大學生同時到一個用人單位應聘,他們能被選聘中的概率分別為,,,且各自能否被選聘中是無關的,則恰好有兩人被選聘中的概率為         

查看答案和解析>>

同步練習冊答案