如圖,已知的夾角為120°,的夾角為45°,||=5,用表示

答案:
解析:


提示:

本題可采用待定系數(shù)法求解.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)△OEP的面積為S,已知
OF
• 
FP
=1.
(1)若
1
2
<S<
3
2
,求向量
OF
FP
 的夾角θ的取值范圍;
(2)若S=
3
4
|
OF
|,且|
OF
|≥2,當(dāng)|
OP
|取最小值時(shí),建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求以O(shè)為中心,F(xiàn)為一個(gè)焦點(diǎn)且經(jīng)過點(diǎn)P的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知
OA
=
a
,
OB
=
b
,任意點(diǎn)M關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為S,點(diǎn)S關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為N.
(1)用
a
b
表示向量
MN
;
(2)設(shè)|
a
|=l,|
b
|=2,
a
b
的夾角為30°,
MN
⊥(λ
a
+
b
),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知四邊形ABCD是邊長(zhǎng)為4的正方形,E、F分別是AB,AD的中點(diǎn),GC垂直于ABCD所在平面,且GC=2.
(1)求異面直線BC與GE所成的角的余弦值;
(2)求平面CBG與平面BGD的夾角的余弦值;
(3)求三棱錐D-GEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐A-BCDE,其中AB=CD=2BE=2
2
,AC=BC=2,CD⊥平面ABC,BE∥CD,F(xiàn)為DA的中點(diǎn).
(1)求證:EF∥平面ABC
(2)求直線BD與平面AED的夾角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓C:(x+1)2+y2=r2(r為常數(shù),且r>2),定點(diǎn)B(1,0),A是圓C上的動(dòng)點(diǎn),直線AC與線段AB的垂直平分線l相交于點(diǎn)M.當(dāng)點(diǎn)A在圓C上移動(dòng)一周時(shí),點(diǎn)M的軌跡記為曲線F.

(1)求曲線F的方程;

(2)求證:直線l與曲線F只有一個(gè)公共點(diǎn)M;

(3)若r=4,點(diǎn)M在第一象限,且,記直線l與直線CM的夾角為,

求tan

查看答案和解析>>

同步練習(xí)冊(cè)答案