已知不等式x2-logax<0,當(dāng)x∈(0,)時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c(a>0).
(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上為單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;
(ii)若b=﹣1,c=1,當(dāng)x∈[0,1]時(shí),|f(x)|的最大值為1,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有兩個(gè)小于1的不等正根,求a的最小正整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用總長為14.8m的鋼條制作一個(gè)長方體容器的框架,如果所制作容器的底面的一邊比另一邊長0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).
(1)若,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè),若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問題.實(shí)踐證明, 聲音強(qiáng)度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當(dāng)聲音強(qiáng)度滿足時(shí),求對應(yīng)的聲音能量滿足的等量關(guān)系式;
(2)當(dāng)人們低聲說話,聲音能量為時(shí),聲音強(qiáng)度為30分貝;當(dāng)人們正常說話,聲音能量為時(shí),聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時(shí)屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時(shí)性失聰.問聲音能量在什么范圍時(shí),人會暫時(shí)性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司為一家制冷設(shè)備廠設(shè)計(jì)生產(chǎn)一種長方形薄板,其周長為4米,這種薄板須沿其對角線折疊后使用.如圖所示,ABCD(AB>AD)為長方形薄板,沿AC折疊后,AB′交DC于點(diǎn)P.當(dāng)△ADP的面積最大時(shí)最節(jié)能,凹多邊形ACB′PD的面積最大時(shí)制冷效果最好.

(1)設(shè)AB=x(米),用x表示圖中DP的長度,并寫出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計(jì)薄板的長和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計(jì)薄板的長和寬?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=x2+ax+3-a,若當(dāng)x∈[-2,2]時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地一漁場的水質(zhì)受到了污染.漁場的工作人員對水質(zhì)檢測后,決定往水中投放一種藥劑來凈化水質(zhì). 已知每投放質(zhì)量為個(gè)單位的藥劑后,經(jīng)過x天該藥劑在水中釋放的濃度y(毫克/升)滿足y=mf(x),其中,當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中釋放的濃度不低于6(毫克/升)且不高于18(毫克/升)時(shí)稱為最佳凈化.
(1)如果投放的藥劑質(zhì)量為m=6,試問漁場的水質(zhì)達(dá)到有效凈化一共可持續(xù)幾天?
(2)如果投放的藥劑質(zhì)量為m,為了使在8天(從投放藥劑算起包括第8天)之內(nèi)的漁場的水質(zhì)達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比。已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).

(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關(guān)系.
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案