設(shè)關(guān)于x的方程sin內(nèi)有兩個(gè)不同根αβ,求αβ的值及k的取值范圍.

 

【答案】

0≤k<1,且αβ.

【解析】可在同一坐標(biāo)系中畫(huà)出函數(shù)y=sin(2x)及y的圖象,借助于圖象的直觀性求解.

設(shè)Cy=sin,ly,在同一坐標(biāo)系中作出它們的圖象如下圖.

由圖易見(jiàn)當(dāng)<1時(shí),即0≤k<1時(shí),直線l與曲線C有兩個(gè)交點(diǎn),且兩交點(diǎn)的橫坐標(biāo)為α、β,從圖象中還可看出α、β關(guān)于x對(duì)稱,故αβ.綜上可知,0≤k<1,且αβ.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達(dá)式.
(2)用“五點(diǎn)作圖法”畫(huà)出函數(shù)f(x)在一個(gè)周期上的圖象.
(3)寫(xiě)出f(x)在[-π,π]上的單調(diào)遞減區(qū)間.
(4)設(shè)關(guān)于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)關(guān)于x的方程x 2 2 x sin θ ( 2 cos 2 θ + 3 ) = 0,其中θ∈[ 0,],則該方程實(shí)根的最大值為           ,實(shí)根的最小值為           。

查看答案和解析>>

同步練習(xí)冊(cè)答案