16.函數(shù)$y=x\sqrt{1-{x^2}}({0<x<1})$的最大值為$\frac{1}{2}$.

分析 根據(jù)基本不等式的性質(zhì)求出函數(shù)的最大值即可.

解答 解:$y=x\sqrt{1-{x^2}}({0<x<1})$≤$\frac{{x}^{2}+1{-x}^{2}}{2}$=$\frac{1}{2}$,
當(dāng)且僅當(dāng)x=$\frac{\sqrt{2}}{2}$時(shí)“=”成立,
故$y=x\sqrt{1-{x^2}}({0<x<1})$的最大值為:$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查了基本不等式的性質(zhì),考查轉(zhuǎn)化思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知P(t,t),t∈R,點(diǎn)M是圓O1:x2+(y-1)2=$\frac{1}{4}$上的動(dòng)點(diǎn),點(diǎn)N是圓O2:(x-2)2+y2=$\frac{1}{4}$上的動(dòng)點(diǎn),求PN-PM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=5,$\overrightarrow{a}$•$\overrightarrow$=6,λ∈R,則|$\overrightarrow{a}$-λ$\overrightarrow$|的取值范圍是[$\frac{8}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.等差數(shù)列{an}前n項(xiàng)和為Sn,且$\frac{{S}_{2016}}{2016}$=$\frac{{S}_{2015}}{2015}$+1,則數(shù)列{an}的公差為( 。
A.1B.2C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,AD∥BC,且BC=2AD,AD⊥CD,PB⊥CD,點(diǎn)E在棱PD上,且PE=2ED.
(1)求證:平面PCD⊥平面PBC;
(2)求證:PB∥平面AEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若圓錐的側(cè)面展開圖是半徑為1cm、圓心角為120°的扇形,則這個(gè)圓錐的軸截面面積等于$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC,∠CBA=30°,D、E分別是BC、AP的中點(diǎn),則異面直線AC與DE所成角的大小為$arccos\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在菱形ABCD中,A=60°,AB=2$\sqrt{3}$,將△ABD沿BD折起到△PBD的位置,若二面角P-BD-C的大小為120°,則三棱錐P-BCD的外接球體積為( 。
A.$\frac{28\sqrt{7}}{3}$πB.28$\sqrt{7}$πC.$\frac{32}{3}$πD.4$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1、2表示沒有擊中目標(biāo),3、4、5、6、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為( 。
A.0.55B.0.6C.0.65D.0.7

查看答案和解析>>

同步練習(xí)冊(cè)答案