過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別是p、q,則+等于( )
A.2a
B.
C.4a
D.
【答案】分析:設(shè)PQ直線方程是,則x1,x2是方程的兩根,,同理q=x2r.由此可知+的值.
解答:解:如圖:
設(shè)PQ直線方程是,
則x1,x2是方程的兩根,
,
其中.同理q=x2r.
從而
故選C.
點(diǎn)評:本題考查拋物線的性質(zhì)和就任,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線于P、Q兩點(diǎn),若線段PF與FQ的長分別是p、q,則
1
p
+
1
q
等于( 。
A、2a
B、
1
2a
C、4a
D、
4
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過拋物線y=ax2+bx+c(a≠0)上一點(diǎn)P(x0,y0)處的切線方程,并由此證實(shí)拋物線的光學(xué)性質(zhì).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過拋物線y=ax2(a>0)的焦點(diǎn),并且與y軸垂直,若l被拋物線截得的線段長為4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點(diǎn).
(1)求拋物線方程;
(2)設(shè)拋物線的一條切線l1,若l1∥l,求切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線交于P、Q兩點(diǎn),若線段PF、FQ的長分別為p、q,則
1
p
+
1
q
=
 

查看答案和解析>>

同步練習(xí)冊答案