設(shè)直線l1的參數(shù)方程為(t為參數(shù)),直線l2的方程為y=3x+4,l1l2間的距離.

 

【解析】將參數(shù)方程(t為參數(shù))化為普通方程為3x-y-2=0.

由兩平行線之間的距離公式可知,所求距離為d==.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十七第六章第三節(jié)練習(xí)卷(解析版) 題型:填空題

函數(shù)f(x)=x3+bx2+cx+d在區(qū)間[-2,2]上是減函數(shù),b+c的最大值為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十第十章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

盒中裝有10只乒乓球,其中6只新球,4只舊球,不放回地依次摸出2個球使用,在第一次摸出新球的條件下,第二次也取到新球的概率為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知矩陣M=,其中aR,若點P(1,-2)在矩陣M的變換下得到點P'(-4,0),

(1)求實數(shù)a的值.

(2)求矩陣M的特征值及其對應(yīng)的特征向量.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十八選修4-4第二節(jié)練習(xí)卷(解析版) 題型:解答題

以直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為ρsin(θ-)=6,C的參數(shù)方程為(θ為參數(shù)),求直線l被圓C截得的弦長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十五選修4-2第二節(jié)練習(xí)卷(解析版) 題型:解答題

2×2矩陣M對應(yīng)的變換將點(1,2)(2,0)分別變換成點(7, 10)(2,4).

(1)求矩陣M的逆矩陣M-1.

(2)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:解答題

一個口袋裝有n個紅球(n5nN)5個白球,一次摸獎從中摸2個球(每次摸獎后放回),2個球顏色不同則為中獎.

(1)試用n表示一次摸獎中獎的概率.

(2)n=5,3次摸獎的中獎次數(shù)ξ=1的概率及數(shù)學(xué)期望.

(3)3次摸獎恰有1次中獎的概率為P,當(dāng)n取多少時,P最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十九選修4-5第一節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=|x-1|+|x+3|.

(1)x的取值范圍,使f(x)為常數(shù)函數(shù).

(2)若關(guān)于x的不等式f(x)-a0有解,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)隨機變量ξ的概率分布為P(ξ=i)=a()i,i=1,2,3,a的值是(  )

(A)   (B)   (C)   (D)

 

查看答案和解析>>

同步練習(xí)冊答案