如圖是一個幾何體的三視圖,則該幾何體的體積是( 。
A、3
B、
4
3
C、1
D、
2
3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:幾何體直四棱柱,根據三視圖判斷四棱柱的高與底面的形狀,根據左視圖知底面是等腰梯形,等腰梯形的上、下底邊長分別為1、2,由主視圖知高為1,把數(shù)據代入棱柱的體積公式計算.
解答: 解:由三視圖知幾何體直四棱柱,且四棱柱的高為2,
底面是等腰梯形,等腰梯形的上、下底邊長分別為1、2,高為1,
∴幾何體的體積V=
1+2
2
×2=3.
故選:A.
點評:本題考查了由三視圖求幾何體的體積,判斷幾何體的形狀及數(shù)據所對應的幾何量是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,AB=2,AD=DC=1,P是線段BC上一動點,Q是線段DC上一動點,
DQ
DC
,
CP
=(1-λ)
CB
,則
AP
AQ
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC內角A、B、C的對邊分別為a,b,c,其中A=120°,S△ABC=
3
,則a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖給出一個算法的程序框圖,該程序框圖的功能是(  )
A、求輸出a,b,c三數(shù)的最大數(shù)
B、求輸出a,b,c三數(shù)的最小數(shù)
C、將a,b,c按從小到大排列
D、將a,b,c按從大到小排列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}是由正數(shù)組成的等比數(shù)列,Sn為其n項和.若a2a4=16,S3=7,則S4=( 。
A、15
B、31
C、63
D、
13
27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x、y滿足不等式
x+y-3≤0
x-y+3≥0
y≥-1
,則z=3x+y的最大值為( 。
A、11B、-11
C、13D、-13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某流程如圖所示,現(xiàn)輸入四個函數(shù),則可以輸出的函數(shù)是( 。
A、f(x)=x2
B、f(x)=
1
x
C、f(x)=lnx+2x-6
D、f(x)=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},滿足an=an-1-3,a2=3,則a9=(  )
A、18B、24
C、-18D、-21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}前n項和Sn=
n2
4
,數(shù)列{bn}滿足3bn-bn-1=n(n≥2,n∈N*),
(1)求數(shù)列{an}的通項公式;
(2)求證:當b1
1
4
時,數(shù)列{bn-an}為等比數(shù)列;
(3)在題(2)的條件下,設數(shù)列{bn}的前n項和為Tn,若數(shù)列{Tn}中只有T3最小,求b1的取值范圍.

查看答案和解析>>

同步練習冊答案