(本小題滿分15分)已知函數(shù).
(I) 若,求曲線在點處的切線方程;
若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(III)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
(I)
(II)
(III)
【解析】⑴當(dāng)時,函數(shù),.,(1分)曲線在點處的切線的斜率為.
從而曲線在點處的切線方程為,即.
⑵. 令,
要使在定義域內(nèi)是增函數(shù),只需在內(nèi)恒成立.
由題意,的圖象為開口向上的拋物線,對稱軸方程為,∴,只需,即時,
∴在內(nèi)為增函數(shù),正實數(shù)的取值范圍是.
⑶∵在上是減函數(shù),∴時,;時,,即,
① 當(dāng)時,,其圖象為開口向下的拋物線,對稱軸在軸的左側(cè),且,所以在內(nèi)是減函數(shù).[來源:][來源:ZXXK]
當(dāng)時,,因為,所以,,此時,在內(nèi)是減函數(shù).故∴當(dāng)時,在上單調(diào)遞減,不合題意;
② 當(dāng)時,由,所以.[來源:Zxxk.Com]
又由⑵知當(dāng)時,在上是增函數(shù),
∴,不合題意;
③ 當(dāng)時,由⑵知在上是增函數(shù),,又在上是減函數(shù),
故只需,,而,,即,解得
綜上所述,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省高三上學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試分別解答以下兩小題.
(。┤舨坏仁對任意的恒成立,求實數(shù)的取值范圍;
(ⅱ)若是兩個不相等的正數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期3月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本小題滿分15分).
已知、分別為橢圓:的
上、下焦點,其中也是拋物線:的焦點,
點是與在第二象限的交點,且。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點P(1,3)和圓:,過點P的動直線與圓相交于不同的兩點A,B,在線段AB取一點Q,滿足:,(且)。求證:點Q總在某定直線上。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:解答題
(本小題滿分15分)
如圖已知,橢圓的左、右焦點分別為、,過的直線與橢圓相交于A、B兩點。
(Ⅰ)若,且,求橢圓的離心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆浙江省寧波市高一上學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分15分)若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題
(本小題滿分15分)在5道題中有3道理科題和2道文科題,如果不放回地依次抽取2道題.求:
(1)第1次抽到理科題的概率;
(2)第1次和第2次都抽到理科題的概率;
(3)在第1次抽到理科題的條件下,第2次抽到文科題的概率
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com