【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每天從該生產(chǎn)線上隨機抽取16個零件,并測量其尺寸(單位:cm).根據(jù)長期生產(chǎn)經(jīng)驗,可以認為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對當(dāng)天的生產(chǎn)過程進行檢查.
(。┰囌f明上述監(jiān)控生產(chǎn)過程方法的合理性;
(ⅱ)下面是檢驗員在一天內(nèi)抽取的16個零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計值 ,用樣本標準差s作為σ的估計值 ,利用估計值判斷是否需對當(dāng)天的生產(chǎn)過程進行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計μ和σ(精確到0.01).
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

【答案】
(1)

解:由題可知尺寸落在(μ﹣3σ,μ+3σ)之內(nèi)的概率為0.9974,

則落在(μ﹣3σ,μ+3σ)之外的概率為1﹣0.9974=0.0026,

因為P(X=0)= ×(1﹣0.9974)0×0.997416≈0.9592,

所以P(X≥1)=1﹣P(X=0)=0.0408,

又因為X~B(16,0.0026),

所以E(X)=16×0.0026=0.0416;


(2)

(ⅰ)由(1)知尺寸落在(μ﹣3σ,μ+3σ)之外的概率為0.0026,

由正態(tài)分布知尺寸落在(μ﹣3σ,μ+3σ)之外為小概率事件,

因此上述監(jiān)控生產(chǎn)過程方法合理;

(ⅱ)因為用樣本平均數(shù) 作為μ的估計值 ,用樣本標準差s作為σ的估計值

= =9.97,s= = ≈0.212,

所以 ﹣3 =9.97﹣3×0.212=9.334, +3 =9.97+3×0.212=10.606,

所以9.22 ﹣3 +3 )=(9.334,10.606),

因此需要對當(dāng)天的生產(chǎn)過程進行檢查,剔除( ﹣3 +3 )之外的數(shù)據(jù)9.22,

則剩下的數(shù)據(jù)估計μ= =10.02,

將剔除掉9.22后剩下的15個數(shù)據(jù),利用方差的計算公式代入計算可知σ2≈0.008,

所以σ≈0.09.


【解析】(1.)通過P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二項分布的期望公式計算可得結(jié)論;
(2.)(。┯桑1)及知落在(μ﹣3σ,μ+3σ)之外為小概率事件可知該監(jiān)控生產(chǎn)過程方法合理;
(ⅱ)通過樣本平均數(shù) 、樣本標準差s估計 、 可知( ﹣3 +3 )=(9.334,10.606),進而需剔除( ﹣3 +3 )之外的數(shù)據(jù)9.22,利用公式計算即得結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)給出以下四個命題:

①已知中,角A,B,C的對邊為a,b,c,當(dāng),,時,滿足條件的三角形共有1個;

②已知中,角A,B,C的對邊為a,b,c,若三角形,這個三角形的最大角是

③設(shè)是兩條不同的直線,,是兩個不同的平面,若,則;

④設(shè)是兩條不同的直線,,是兩個不同的平面,若,則

其中正確的序號是__________(寫出所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分)
(1)當(dāng)a=1時,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:

(1)畫出散點圖;

(2)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;

(3)若該公司還有一個零售店某月銷售額為10千萬元,試估計它的利潤額是多少?

(參考公式:,其中:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:(x+1)(x-5)≤0,命題q:1-mx<1+m(m>0).

(1)pq的充分條件,求實數(shù)m的取值范圍;

(2)m=5,如果pq有且僅有一個真命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校有高中生1470人,現(xiàn)采用系統(tǒng)抽樣法抽取49人作問卷調(diào)查,將高一、高二、高三學(xué)生(高一、高二、高三分別有學(xué)生495人、493人、482人)按1,2,3,…,1470編號,若第一組用簡單隨機抽樣的方法抽取的號碼為23,則所抽樣本中高二學(xué)生的人數(shù)為

A. 15B. 16C. 17D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.

(1)求曲線的極坐標方程;

(2) 已知點的極坐標為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中, 分別為內(nèi)角的對邊,且

(1)求角的大小;

(2)若的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.

(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認為性別與是否為類學(xué)生有關(guān)系?

合計

110

50

合計

(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.

參考公式:,其中.

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案