17.2017年“一帶一路”國(guó)際合作高峰論壇于今年5月14日至15日在北京舉行.為高標(biāo)準(zhǔn)完成高峰論壇會(huì)議期間的志愿服務(wù)工作,將從27所北京高校招募大學(xué)生志愿者,某調(diào)查機(jī)構(gòu)從是否有意愿做志愿者在某高校訪問了80人,經(jīng)過統(tǒng)計(jì),得到如下丟失數(shù)據(jù)的列聯(lián)表:(a,b,d,A,B,表示丟失的數(shù)據(jù))
 無意愿有意愿總計(jì)
ab40
5dA
總計(jì)25B80
(Ⅰ)求出a,b,d,A,B的值,并判斷:能否有99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);
(Ⅱ)若表中無意愿做志愿者的5個(gè)女同學(xué)中,3個(gè)是大學(xué)三年級(jí)同學(xué),2個(gè)是大學(xué)四年級(jí)同學(xué).現(xiàn)從這5個(gè)同學(xué)中隨機(jī)選2同學(xué)進(jìn)行進(jìn)一步調(diào)查,求這2個(gè)同學(xué)是同年級(jí)的概率.
附參考公式及數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
P(K2≥k00.400.250.100.0100.0050.001
k00.7081.3232.7066.6357.87910.828

分析 (Ⅰ)由表中數(shù)據(jù)算得a、b、A、d和B的值,再計(jì)算K2的觀測(cè)值,對(duì)照臨界值得出結(jié)論;
(Ⅱ)用列舉法求出基本事件數(shù),計(jì)算所求的概率值.

解答 解:(Ⅰ)由表中數(shù)據(jù)得a=25-5=20,
b=40-a=20,
A=80-40=40,
d=A-5=35,
B=80-25=55,…(3分)
計(jì)算K2的觀測(cè)值${k_0}=\frac{{80{{({20×35-5×20})}^2}}}{40×40×25×55}≈13.09>10.828$,…(5分)
∴99.9%的把握認(rèn)為有意愿做志愿者與性別有關(guān);…(6分)
(Ⅱ)記3個(gè)大三同學(xué)分別為A1、A2、A3,2個(gè)大四同學(xué)分別為B1、B2
則從中抽取2個(gè)的基本事件有:
A1A2,A1A3,A2A3,A1B1,A2B1,A3B1,A1B2,A2B2,A3B2,B1B2共10個(gè),…(8分)
其中抽取的2個(gè)是同一年級(jí)的基本事件有:
A1A2,A1A3,A2A3,B1B2共4個(gè),…(9分)
則所求的概率為$\frac{4}{10}=\frac{2}{5}$.       …(12分)

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)與列舉法求古典概型的概率問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{cosx-1}{\sqrt{3-2\sqrt{2}sin(x+\frac{π}{4})}}$(x∈[0,2π)),則f(x)的值域是( 。
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-1,1]C.[-1,0]D.[-$\sqrt{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知O為坐標(biāo)原點(diǎn),拋物線C:y2=nx(n>0)在第一象限內(nèi)的點(diǎn)P(1,t)到焦點(diǎn)的距離為2,曲線C在點(diǎn)P處的切線交x軸于點(diǎn)Q,直線l1經(jīng)過點(diǎn)Q且垂直于x軸.
(Ⅰ)求線段OQ的長(zhǎng);
(Ⅱ)設(shè)不經(jīng)過點(diǎn)P和Q的動(dòng)直線l2:x=my+b交曲線C于點(diǎn)A和B,交l1于點(diǎn)E,若直線PA,PE,PB的斜率依次成等差數(shù)列,試問:l2是否過定點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p的值為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0,b>0,$\frac{1}{a}$$+\frac{3}$=2,則a+2b的最小值為( 。
A.7+2$\sqrt{6}$B.$\frac{7}{2}$+$\sqrt{6}$C.5$+2\sqrt{6}$D.$\frac{5}{2}+\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是平行四邊形,PA⊥平面ABCD,AC⊥AB,AB=PA,點(diǎn)E是PD上的點(diǎn),且DE=λEP(0<λ≤1).
(Ⅰ)求證:PB⊥AC;
(Ⅱ)若PB∥平面ACE,求λ的值;
(Ⅲ)若二面角E-AC-P的大小為60°,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知A,D分別是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左頂點(diǎn)和上頂點(diǎn),點(diǎn)P是線段AD上的任意一點(diǎn),點(diǎn)F1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值是1,最小值是-$\frac{11}{5}$,則橢圓的標(biāo)準(zhǔn)方程為( 。
A.x2+$\frac{{y}^{2}}{2}$=1B.x2+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{2}$+y2=1D.$\frac{{x}^{2}}{4}$+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對(duì)稱的圓為C
(1)求圓C的方程;
(2)過點(diǎn)(-1,0)作直線與圓C交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形OASB中|$\overrightarrow{OS}$|=|$\overrightarrow{OA}$-$\overrightarrow{OB}$|?若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)O為坐標(biāo)原點(diǎn),直線l:x-y+m=0與圓C:x2-2x+y2-7=0交于M,N兩點(diǎn),與x軸,y軸交于A,B兩點(diǎn),且$\sqrt{3}$|$\overrightarrow{MN}$|=3|$\overrightarrow{OM}$+$\overrightarrow{ON}$|,點(diǎn)P在直線l上,滿足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,若$\overrightarrow{PO}$•$\overrightarrow{PC}$=3,則λ的值為4±$\sqrt{17}$或-3$±\sqrt{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案