【題目】2016年某招聘會(huì)上,有5個(gè)條件很類(lèi)似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書(shū)工作,但只有2個(gè)秘書(shū)職位,因此5人中僅有2人被錄用,如果5個(gè)人被錄用的機(jī)會(huì)相等,分別計(jì)算下列事件的概率:
(1)C得到一個(gè)職位
(2)B或E得到一個(gè)職位.

【答案】
(1)解:5人中有2人被錄用的基本事件共有10個(gè),分別為:

(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),

C得到一職位包含的基本事件有4個(gè),分別為(A,C),(B,C),(C,D),(C,E),

∴C得到一個(gè)職位的概率P1=


(2)解:B或E得到一個(gè)職位,包含的基本事件個(gè)數(shù)有7個(gè),分別為:

(A,B),(A,E),(B,C),(B,D),(B,E),(C,E),(D,E),

∴B或E得到一個(gè)職位的概率P2=


【解析】(1)利用列舉法求出5人中有2人被錄用的基本事件共有10個(gè),C得到一職位包含的基本事件有4個(gè),由此能求出C得到一個(gè)職位的概率.(2)利用列舉法求出B或E得到一個(gè)職位,包含的基本事件個(gè)數(shù),由此能求出B或E得到一個(gè)職位的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣(mài)也開(kāi)始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣(mài)在市的普及情況, 市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣(mài)的問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡(luò)外賣(mài)

偶爾或不用網(wǎng)絡(luò)外賣(mài)

合計(jì)

男性

50

50

100

女性

60

40

100

合計(jì)

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣(mài)的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣(mài)優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣(mài)的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.

(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是(
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- , )?
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè), 直線與曲線交于 兩點(diǎn).

(1)當(dāng)時(shí),求的長(zhǎng)度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數(shù))

(Ⅰ)寫(xiě)出曲線C的參數(shù)方程,直線l的普通方程;

(Ⅱ)過(guò)曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立的機(jī)坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過(guò)點(diǎn)且與直線平行的直線兩點(diǎn),求點(diǎn)兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面向量 滿足| |=1,| |=2.
(1)若 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家治理環(huán)境污染的號(hào)召,增強(qiáng)學(xué)生的環(huán)保意識(shí),宿州市某中學(xué)舉行了一次環(huán)保知識(shí)競(jìng)賽,共有900名學(xué)生參加了這次競(jìng)賽,為了解本次競(jìng)賽的成績(jī)情況,從中抽取了l00學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),成績(jī)頻率分布直方圖如圖所示.估計(jì)這次測(cè)試中成績(jī)的眾數(shù)為;平均數(shù)為;中位數(shù)為 . (各組平均數(shù)取中值計(jì)算,保留整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案