【題目】2016年某招聘會上,有5個條件很類似的求職者,把他們記為A,B,C,D,E,他們應(yīng)聘秘書工作,但只有2個秘書職位,因此5人中僅有2人被錄用,如果5個人被錄用的機會相等,分別計算下列事件的概率:
(1)C得到一個職位
(2)B或E得到一個職位.

【答案】
(1)解:5人中有2人被錄用的基本事件共有10個,分別為:

(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),

C得到一職位包含的基本事件有4個,分別為(A,C),(B,C),(C,D),(C,E),

∴C得到一個職位的概率P1=


(2)解:B或E得到一個職位,包含的基本事件個數(shù)有7個,分別為:

(A,B),(A,E),(B,C),(B,D),(B,E),(C,E),(D,E),

∴B或E得到一個職位的概率P2=


【解析】(1)利用列舉法求出5人中有2人被錄用的基本事件共有10個,C得到一職位包含的基本事件有4個,由此能求出C得到一個職位的概率.(2)利用列舉法求出B或E得到一個職位,包含的基本事件個數(shù),由此能求出B或E得到一個職位的概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況, 市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡(luò)外賣

偶爾或不用網(wǎng)絡(luò)外賣

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°,PA=PC=5,PB=4,AB=BC=2 ,∠ACB=30°.

(1)求證:AC⊥PB;
(2)求三棱錐P﹣ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=ln(1+|x|)﹣ ,則使得f(x)>f(2x﹣1)成立的取值范圍是(
A.(﹣∞, )∪(1,+∞)?
B.( ,1)
C.(- , )?
D.(﹣∞,﹣ ,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點處,極軸與軸的正半軸重合,且長度單位相同;曲線 的方程是,直線的參數(shù)方程為為參數(shù),),設(shè), 直線與曲線交于 兩點.

(1)當(dāng)時,求的長度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數(shù))

(Ⅰ)寫出曲線C的參數(shù)方程,直線l的普通方程;

(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點為極點, 軸的非負(fù)半軸為極軸建立的機坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點且與直線平行的直線兩點,求點兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量 , 滿足| |=1,| |=2.
(1)若 的夾角θ=120°,求| + |的值;
(2)若(k + )⊥(k ),求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家治理環(huán)境污染的號召,增強學(xué)生的環(huán)保意識,宿州市某中學(xué)舉行了一次環(huán)保知識競賽,共有900名學(xué)生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了l00學(xué)生的成績進行統(tǒng)計,成績頻率分布直方圖如圖所示.估計這次測試中成績的眾數(shù)為;平均數(shù)為;中位數(shù)為 . (各組平均數(shù)取中值計算,保留整數(shù))

查看答案和解析>>

同步練習(xí)冊答案