13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,左焦點為F(-1,0),過點D(0,2)且斜率為k的直線l交橢圓于A,B兩點.
(1)求橢圓C的標準方程;
(2)在y軸上,是否存在定點E,使$\overrightarrow{AE}•\overrightarrow{BE}$恒為定值?若存在,求出E點的坐標和這個定值;若不存在,說明理由.

分析 (1)運用離心率公式和焦點坐標,直接求出a,b;
(2)利用設(shè)而不求的方法,設(shè)出要求的常數(shù),并利用多項式的恒等條件(相同次項的系數(shù)相等)

解答 解:(1)由已知得$\frac{c}{a}=\frac{\sqrt{2}}{2},c=1$,∴a2=2,b2=1,
∴橢圓C的標準方程:$\frac{{x}^{2}}{2}+{y}^{2}=1$
(2)依題意過點D(0,2)且斜率為k的直線l的方程為:y=kx+2
由$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$得(1+2k2)x2+8kx+6=0
設(shè)A(x1,y1),B(x2,y2)則x1+x2=-$\frac{8k}{1+2{k}^{2}}$,x1x2=$\frac{6}{1+2{k}^{2}}$;
又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=-$\frac{2{k}^{2}-4}{2{k}^{2}+1}$.
y1+y2=(kx1+2)+(kx2+2)=k(x1+x2)+4=$\frac{4}{2{k}^{2}+1}$.
設(shè)存在點E(0,m),則$\overrightarrow{AE}=(-{x}_{1},m-{y}_{1}),\overrightarrow{BE}=(-{x}_{2},m-{y}_{2})$.
所以$\overrightarrow{AE}•\overrightarrow{BE}={x}_{1}{x}_{2}+{m}^{2}-m({y}_{1}+{y}_{2})+{y}_{1}{y}_{2}$=$\frac{6}{2{k}^{2}+1}+{m}^{2}-m×\frac{4}{2{k}^{2}+1}-\frac{2{k}^{2}-4}{2{k}^{2}+1}$
=$\frac{(2{m}^{2}-2){k}^{2}+{m}^{2}-4m+10}{2{k}^{2}+1}$
要使$\overrightarrow{AE}•\overrightarrow{BE}$=t(t為常數(shù)),
只要 $\frac{(2{m}^{2}-2){k}^{2}+{m}^{2}-4m+10}{2{k}^{2}+1}$=t,從而(2m2-2-2t)k2+m2-4m+10-t=0
即2m2-2-2t=0且m2-4m+10-t=0由(1)得 t=m2-1,
代入(2)解得m=$\frac{11}{4}$,從而t=$\frac{105}{16}$,
故存在定點 E(0,$\frac{11}{4}$),使$\overrightarrow{AE}•\overrightarrow{BE}$恒為定值$\frac{105}{16}$.

點評 本題考查直線與橢圓的位置關(guān)系及定點定值問題,關(guān)鍵要掌握常見的處理方法與技巧,屬于壓軸題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知命題p:?x∈R,x2-x+1>0,則¬p為( 。
A.?x∉R,x2-x+1>0B.?x0∉R,${x_0}^2-{x_0}+1≤0$
C.?x∈R,x2-x+1≤0D.?x0∈R,${x_0}^2-{x_0}+1≤0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若$a={({\frac{1}{2}})^{0.3}}$,$b={({\frac{1}{2}})^{-2}}$,$c=lo{g}_{\frac{1}{2}}2$,則a,b,c大小關(guān)系為( 。
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)的圖象如圖,則它的一個可能的解析式為( 。
A.y=2$\sqrt{x}$B.y=4-$\frac{4}{x+1}$C.y=log3(x+1)D.y=$\root{3}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=2sinx-2cosx,$x∈[-\frac{1}{2},1]$,g(x)=e1-2x
(1)求函數(shù)f(x)在x=0處的切線方程;
(2)求證:$x∈[-\frac{1}{2},1]$時,f(x)≥l(x)恒成立;
(3)求證:$x∈[-\frac{1}{2},1]$時,f(x)+g(x)≥0恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx-$\frac{a}{x}$.
(1)當a=-3時,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在[1,e]上的最小值為$\frac{3}{2}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列函數(shù)中既是奇函數(shù),又在區(qū)間(0,1)上是增函數(shù)的為(  )
A.y=lnxB.y=3xC.y=sinxD.y=x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.p:x≠2或y≠4是q:x+y≠6的必要不充分條件.(四個選一個填空:充分不必要,必要不充分,充要,既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為BB1,CD的中點,則點F到平面A1D1E的距離為$\frac{\sqrt{5}}{10}$.

查看答案和解析>>

同步練習冊答案