已知函數(shù),,若對(duì)于任一實(shí)數(shù),與的值至少有一個(gè)為正數(shù),則實(shí)數(shù)的取值范圍是( )
A.(0,2) B.(0,8) C.(2,8) D.(-∞,0)
C
【解析】
試題分析:當(dāng)m≤0時(shí),顯然不成立,當(dāng)m=0時(shí),因f(0)=1>0,
當(dāng)m>0時(shí),若,即時(shí)結(jié)論顯然成立;
若時(shí),只要△=4(4-m)2-8m=4(m-8)(m-2)<0即可,即4<m<8,
則0<m<8,故選B.
考點(diǎn):一元二次函數(shù),一元二次不等式,一元二次方程之間的關(guān)系,以及分析問(wèn)題解決問(wèn)題的能力.
點(diǎn)評(píng):解本小題的突破口是因?yàn)間(x)=mx顯然對(duì)任一實(shí)數(shù)x不可能恒為正數(shù),所以應(yīng)按和分類研究,g(x)的取值,進(jìn)而判斷出f(x)的取值,從而找到解決此問(wèn)題的途徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(上海秋季)解析版(理) 題型:解答題
[番茄花園1] 本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。
若實(shí)數(shù)、、滿足,則稱比遠(yuǎn)離.
(1)若比1遠(yuǎn)離0,求的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)、,證明:比遠(yuǎn)離;
(3)已知函數(shù)的定義域.任取,等于和中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為,點(diǎn)P的坐標(biāo)為(-a,b).
(1)若直角坐標(biāo)平面上的點(diǎn)M、A(0,-b),B(a,0)滿足,求點(diǎn)的坐標(biāo);
(2)設(shè)直線交橢圓于、兩點(diǎn),交直線于點(diǎn).若,證明:為的中點(diǎn);
(3)對(duì)于橢圓上的點(diǎn)Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個(gè)交點(diǎn)、滿足,寫出求作點(diǎn)、的步驟,并求出使、存在的θ的取值范圍.
[番茄花園1]22.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省廈門外國(guó)語(yǔ)中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com