解:(1)當
時,函數(shù)
…(1分)
令t=2
x(t>0),則原函數(shù)變?yōu)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/33070.png' />
由條件知,當t∈(0,1]時,y單調(diào)遞減.此時x∈(-∞,0],且t=2
x在(-∞,0]上單調(diào)遞增.
所以有函數(shù)
在(-∞,0]上單調(diào)遞減.…(3分)
當t∈[1,+∞)時,y單調(diào)遞增.此時x∈[0,+∞),且t=2
x在[0,+∞)上單調(diào)遞增.
所以有函數(shù)
在(-∞,0]上單調(diào)遞增.…(3分)
綜上,
在(-∞,0]上單調(diào)遞減,在(-∞,0]上單調(diào)遞增. …(1分)
(2)由題意,ab=1,所以有
①若f(x)為奇函數(shù),則有f(-x)=-f(x),即a
-x+kb
-x=-(a
x+kb
x),
即
,得b
x+ka
x=-(a
x+kb
x),
整理得(1+k)(b
x+a
x)=0,所以有1+k=0,得k=-1…(3分)
②若f(x)為偶函數(shù),則有f(-x)=f(x),即a
-x+kb
-x=a
x+kb
x,
即
,得b
x+ka
x=a
x+kb
x,所以得k=1…(3分)
綜上有,k=-1時,f(x)為奇函數(shù),k=1時,f(x)為偶函數(shù).…(1分)
分析:(1)將a,b的值代入,得到
,換元,令t=2
x,根據(jù)
的單調(diào)區(qū)間判斷函數(shù)的單調(diào)區(qū)間.
(2)根據(jù)奇函數(shù)偶函數(shù)的概念,代入f(x),化簡整理,求得k的值.
點評:本題考查了復合函數(shù)的單調(diào)性以及函數(shù)的奇偶性,中間用到了換元法,是中檔題.