數(shù)列首項(xiàng),前項(xiàng)和之間滿足
(1)求證:數(shù)列是等差數(shù)列  (2)求數(shù)列的通項(xiàng)公式
(3)設(shè)存在正數(shù),使對(duì)于一切都成立,求的最大值。
⑴證明略,⑵,⑶的最大值是.
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123311649244.gif" style="vertical-align:middle;" />時(shí), 
由題意  
 是以為首項(xiàng),為公差的等差數(shù)列.  
(2)由(1)有  
時(shí),.
       
(3)設(shè)

上遞增  故使恒成立只需 
 又  ,所以,的最大值是.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某外商到一開放區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經(jīng)費(fèi)12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元.
(1)若扣除投資及各種經(jīng)費(fèi),則從第幾年開始獲取純利潤(rùn)?
(2)若干年后,外商為開發(fā)新項(xiàng)目,有兩種處理方案: ①年平均利潤(rùn)最大時(shí)以48萬美元出售該廠;②純利潤(rùn)總和最大時(shí),以16萬元出售該廠,問哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}為等差數(shù)列,公差d≠0,由{an}中的部分項(xiàng)組成的數(shù)列
a,a,…,a,…為等比數(shù)列,其中b1=1,b2=5,b3=17.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)記Tn=Cb1+Cb2+Cb3+…+Cbn,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)單調(diào)遞增函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823123347560436.gif" style="vertical-align:middle;" />,且對(duì)任意的正實(shí)數(shù)x,y有:
⑴.一個(gè)各項(xiàng)均為正數(shù)的數(shù)列滿足:其中為數(shù)列的前n項(xiàng)和,求數(shù)列的通項(xiàng)公式;
⑵.在⑴的條件下,是否存在正數(shù)M使下列不等式:

對(duì)一切成立?若存在,求出M的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知為等差數(shù)列,,則         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:公差不為零的等差數(shù)列中,是其前項(xiàng)和,且成等比數(shù)列.
⑴求數(shù)列的公比;
⑵若,求等差數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為等差數(shù)列,互不相等),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,成等差數(shù)列,成等比數(shù)列,
的最小值是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案