已知函數(shù),

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),若對(duì)任意的兩個(gè)實(shí)數(shù)滿足,總存在,使得成立,證明:

 

【答案】

(1) 函數(shù)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,

(2)    (3)構(gòu)造函數(shù)證明.

【解析】

試題分析:(1)當(dāng)時(shí),函數(shù),則

當(dāng)時(shí),,當(dāng)時(shí),1,

則函數(shù)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,

(2)恒成立,即恒成立,整理得恒成立.

設(shè),則,令,得.當(dāng)時(shí),,函數(shù)單調(diào)遞增,當(dāng)時(shí),,函數(shù)單調(diào)遞減,因此當(dāng)時(shí),取得最大值1,因而

(3)

因?yàn)閷?duì)任意的總存在,使得成立,

所以,即,

設(shè),其中,則,因而在區(qū)間(0,1)上單調(diào)遞增,,又.所以,即

考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用

點(diǎn)評(píng):本題是中檔題,考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,不等式的綜合應(yīng)用,考查計(jì)算能力,轉(zhuǎn)化思想的應(yīng)用.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x2
+
x2-1
的定義域是( 。
A、[-1,1]
B、{-1,1}
C、(-1,1)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(1-b)x+b,x<0
(b-3)x2+2,x≥0
,在(-∞,+∞)上是減函數(shù),則實(shí)數(shù)b的范圍為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-
a
x
,g(x)=
lnx
x
,且函數(shù)f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+3=0垂直.
(I)求a的值;
(II)如果當(dāng)x∈(0,1)時(shí),t•g(x)≤f(x)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
1
x+1
的定義域?yàn)榧螦,集合B=(-2,+∞),則集合(CRA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

請(qǐng)考生注意:重點(diǎn)高中學(xué)生做(2)(3).一般高中學(xué)生只做(1)(2).
已知函數(shù)f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當(dāng)a>0時(shí),討論f(x)的單調(diào)性;
(3)當(dāng)a=
3
4
時(shí),設(shè)g(x)=x2-bx+1,若對(duì)任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案