已知f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),且f(x)-f(x+4)=0.若x∈[0,2]時(shí),f(x)=2-x,則f(7.5)=


  1. A.
    0.5
  2. B.
    -0.5
  3. C.
    1.5
  4. D.
    -1.5
C
分析:由偶函數(shù)的定義可得f(-x)=f(x),再由f(x)-f(x+4)=0可得 f(x+4)=f(x),故f(7.5)=f(-0.5)=f(0.5)從而求出答案.
解答:∵函數(shù)f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),∴f(-x)=f(x).
再由f(x)-f(x+4)=0可得f(x+4)=f(x),即函數(shù)f(x)是周期為4的周期函數(shù).
故 f(7.5))=f(7.5-2×4)=f(-0.5)=f(0.5)=2-0.5=1.5.
故選C.
點(diǎn)評(píng):本題主要考查利用函數(shù)的奇偶性和周期性求函數(shù)的值,判斷函數(shù)f(x)是周期為4的周期函數(shù),是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-4,4)上的奇函數(shù),它在定義域內(nèi)單調(diào)遞減 若a滿足f(1-a)+f(2a-3)小于0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí),都有
f(a)+f(b)
a+b
>0

(1)證明函數(shù)a=1在f(x)=-x2+x+lnx上是增函數(shù);
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
對(duì)所有f'(x)=0,任意x=-
1
2
恒成立,求實(shí)數(shù)x=1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是定義在R上的函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,則g(2009)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在實(shí)數(shù)集R上的增函數(shù),且f(1)=0,函數(shù)g(x)在(-∞,1]上為增函數(shù),在[1,+∞)上為減函數(shù),且g(4)=g(0)=0,則集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在(-∞,+∞)上的偶函數(shù),且在(-∞,0)上是增函數(shù),設(shè)a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),則a,b,c的大小關(guān)系
a>b>c
a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案